Search Results

Now showing 1 - 10 of 20
Loading...
Thumbnail Image
Item

Critical appraisal concerning “Wearable cardioverter defibrillators for the prevention of sudden cardiac arrest: A health technology assessment and patient focus group study”

2018, Sperzel, Johannes, Staudacher, Ingo, Goeing, Olaf, Stockburger, Martin, Meyer, Thorsten, Oliveira Gonçalves, Ana Sofia, Sydow, Hanna, Schoenfelder, Tonio, Amelung, Volker Eric

[no abstract available]

Loading...
Thumbnail Image
Item

Graphene oxide functional nanohybrids with magnetic nanoparticles for improved vectorization of doxorubicin to neuroblastoma cells

2019, Lerra, L., Farfalla, A., Sanz, B., Cirillo, G., Vittorio, O., Voli, F., Grand, M.L., Curcio, M., Nicoletta, F.P., Dubrovska, A., Hampel, S., Iemma, F., Goya, G.F.

With the aim to obtain a site-specific doxorubicin (DOX) delivery in neuroblastoma SH-SY5Y cells, we designed an hybrid nanocarrier combining graphene oxide (GO) and magnetic iron oxide nanoparticles (MNPs), acting as core elements, and a curcumin–human serum albumin conjugate as functional coating. The nanohybrid, synthesized by redox reaction between the MNPs@GO system and albumin bioconjugate, consisted of MNPs@GO nanosheets homogeneously coated by the bioconjugate as verified by SEM investigations. Drug release experiments showed a pH-responsive behavior with higher release amounts in acidic (45% at pH 5.0) vs. neutral (28% at pH 7.4) environments. Cell internalization studies proved the presence of nanohybrid inside SH-SY5Y cytoplasm. The improved efficacy obtained in viability assays is given by the synergy of functional coating and MNPs constituting the nanohybrids: while curcumin moieties were able to keep low DOX cytotoxicity levels (at concentrations of 0.44–0.88 µM), the presence of MNPs allowed remote actuation on the nanohybrid by a magnetic field, increasing the dose delivered at the target site.

Loading...
Thumbnail Image
Item

Environmental co-benefits and adverse side-effects of alternative power sector decarbonization strategies

2019, Luderer, Gunnar, Pehl, Michaja, Arvesen, Anders, Gibon, Thomas, Bodirsky, Benjamin L., de Boer, Harmen Sytze, Fricko, Oliver, Hejazi, Mohamad, Humpenöder, Florian, Iyer, Gokul, Mima, Silvana, Mouratiadou, Ioanna, Pietzcker, Robert C., Popp, Alexander, van den Berg, Maarten, van Vuuren, Detlef, Hertwich, Edgar G.

A rapid and deep decarbonization of power supply worldwide is required to limit global warming to well below 2 °C. Beyond greenhouse gas emissions, the power sector is also responsible for numerous other environmental impacts. Here we combine scenarios from integrated assessment models with a forward-looking life-cycle assessment to explore how alternative technology choices in power sector decarbonization pathways compare in terms of non-climate environmental impacts at the system level. While all decarbonization pathways yield major environmental co-benefits, we find that the scale of co-benefits as well as profiles of adverse side-effects depend strongly on technology choice. Mitigation scenarios focusing on wind and solar power are more effective in reducing human health impacts compared to those with low renewable energy, while inducing a more pronounced shift away from fossil and toward mineral resource depletion. Conversely, non-climate ecosystem damages are highly uncertain but tend to increase, chiefly due to land requirements for bioenergy.

Loading...
Thumbnail Image
Item

When optimization for governing human-environment tipping elements is neither sustainable nor safe

2018, Barfuss, W., Donges, J.F., Lade, S.J., Kurths, J.

Optimizing economic welfare in environmental governance has been criticized for delivering short-term gains at the expense of long-term environmental degradation. Different from economic optimization, the concepts of sustainability and the more recent safe operating space have been used to derive policies in environmental governance. However, a formal comparison between these three policy paradigms is still missing, leaving policy makers uncertain which paradigm to apply. Here, we develop a better understanding of their interrelationships, using a stylized model of human-environment tipping elements. We find that no paradigm guarantees fulfilling requirements imposed by another paradigm and derive simple heuristics for the conditions under which these trade-offs occur. We show that the absence of such a master paradigm is of special relevance for governing real-world tipping systems such as climate, fisheries, and farming, which may reside in a parameter regime where economic optimization is neither sustainable nor safe.

Loading...
Thumbnail Image
Item

Comments on the authors’ reply to the critical appraisal concerning “Wearable cardioverter defibrillators for the prevention of sudden cardiac arrest: A health technology assessment and patient focus group study”

2018, Sperzel, Johannes, Staudacher, Ingo, Goeing, Olaf, Stockburger, Martin, Meyer, Thorsten, Oliveira Goncalves, Ana Sofia, Sydow, Hanna, Schoenfelder, Tonio, Amelung, Volker Eric

[no abstract available]

Loading...
Thumbnail Image
Item

Switchable magnetic bulk photovoltaic effect in the two-dimensional magnet CrI3

2019, Zhang, Y., Holder, T., Ishizuka, H., de Juan, F., Nagaosa, N., Felser, C., Yan, B.

The bulk photovoltaic effect (BPVE) rectifies light into the dc current in a single-phase material and attracts the interest to design high-efficiency solar cells beyond the pn junction paradigm. Because it is a hot electron effect, the BPVE surpasses the thermodynamic Shockley–Queisser limit to generate above-band-gap photovoltage. While the guiding principle for BPVE materials is to break the crystal centrosymmetry, here we propose a magnetic photogalvanic effect (MPGE) that introduces the magnetism as a key ingredient and induces a giant BPVE. The MPGE emerges from the magnetism-induced asymmetry of the carrier velocity in the band structure. We demonstrate the MPGE in a layered magnetic insulator CrI3, with much larger photoconductivity than any previously reported results. The photocurrent can be reversed and switched by controllable magnetic transitions. Our work paves a pathway to search for magnetic photovoltaic materials and to design switchable devices combining magnetic, electronic, and optical functionalities.

Loading...
Thumbnail Image
Item

Key determinants of global land-use projections

2019, Stehfest, Elke, van Zeist, Willem-Jan, Valin, Hugo, Havlik, Petr, Popp, Alexander, Kyle, Page, Tabeau, Andrzej, Mason-D’Croz, Daniel, Hasegawa, Tomoko, Bodirsky, Benjamin L., Calvin, Katherine, Doelman, Jonathan C., Fujimori, Shinichiro, Humpenöder, Florian, Lotze-Campen, Hermann, van Meijl, Hans, Wiebe, Keith

Land use is at the core of various sustainable development goals. Long-term climate foresight studies have structured their recent analyses around five socio-economic pathways (SSPs), with consistent storylines of future macroeconomic and societal developments; however, model quantification of these scenarios shows substantial heterogeneity in land-use projections. Here we build on a recently developed sensitivity approach to identify how future land use depends on six distinct socio-economic drivers (population, wealth, consumption preferences, agricultural productivity, land-use regulation, and trade) and their interactions. Spread across models arises mostly from diverging sensitivities to long-term drivers and from various representations of land-use regulation and trade, calling for reconciliation efforts and more empirical research. Most influential determinants for future cropland and pasture extent are population and agricultural efficiency. Furthermore, land-use regulation and consumption changes can play a key role in reducing both land use and food-security risks, and need to be central elements in sustainable development strategies.

Loading...
Thumbnail Image
Item

Non-touching plasma–liquid interaction – where is aqueous nitric oxide generated?

2018, Jablonowski, Helena, Schmidt-Bleker, Ansgar, Weltmann, Klaus-Dieter, von Woedtke, Thomas, Wende, Kristian

Mass transport through graphene is receiving increasing attention due to the potential for molecular sieving. Experimental studies are mostly limited to the translocation of protons, ions, and water molecules, and results for larger molecules through graphene are rare. Here, we perform controlled radical polymerization with surface-anchored self-assembled initiator monolayer in a monomer solution with single-layer graphene separating the initiator from the monomer. We demonstrate that neutral monomers are able to pass through the graphene (via native defects) and increase the graphene defects ratio (Raman ID/IG) from ca. 0.09 to 0.22. The translocations of anionic and cationic monomers through graphene are significantly slower due to chemical interactions of monomers with the graphene defects. Interestingly, if micropatterned initiator-monolayers are used, the translocations of anionic monomers apparently cut the graphene sheet into congruent microscopic structures. The varied interactions between monomers and graphene defects are further investigated by quantum molecular dynamics simulations.

Loading...
Thumbnail Image
Item

State-of-the-art global models underestimate impacts from climate extremes

2019, Schewe, Jacob, Gosling, Simon N., Reyer, Christopher, Zhao, Fang, Ciais, Philippe, Elliott, Joshua, Francois, Louis, Huber, Veronika, Lotze, Heike K., Seneviratne, Sonia I., van Vliet, Michelle T. H., Vautard, Robert, Wada, Yoshihide, Breuer, Lutz, Büchner, Matthias, Carozza, David A., Chang, Jinfeng, Coll, Marta, Deryng, Delphine, de Wit, Allard, Eddy, Tyler D., Folberth, Christian, Frieler, Katja, Friend, Andrew D., Gerten, Dieter, Gudmundsson, Lukas, Hanasaki, Naota, Ito, Akihiko, Khabarov, Nikolay, Kim, Hyungjun, Lawrence, Peter, Morfopoulos, Catherine, Müller, Christoph, Müller Schmied, Hannes, Orth, René, Ostberg, Sebastian, Pokhrel, Yadu, Pugh, Thomas A. M., Sakurai, Gen, Satoh, Yusuke, Schmid, Erwin, Stacke, Tobias, Steenbeek, Jeroen, Steinkamp, Jörg, Tang, Qiuhong, Tian, Hanqin, Tittensor, Derek P., Volkholz, Jan, Wang, Xuhui, Warszawski, Lila

Global impact models represent process-level understanding of how natural and human systems may be affected by climate change. Their projections are used in integrated assessments of climate change. Here we test, for the first time, systematically across many important systems, how well such impact models capture the impacts of extreme climate conditions. Using the 2003 European heat wave and drought as a historical analogue for comparable events in the future, we find that a majority of models underestimate the extremeness of impacts in important sectors such as agriculture, terrestrial ecosystems, and heat-related human mortality, while impacts on water resources and hydropower are overestimated in some river basins; and the spread across models is often large. This has important implications for economic assessments of climate change impacts that rely on these models. It also means that societal risks from future extreme events may be greater than previously thought.

Loading...
Thumbnail Image
Item

Abrupt transitions in time series with uncertainties

2018, Goswami, B., Boers, N., Rheinwalt, A., Marwan, N., Heitzig, J., Breitenbach, S.F.M., Kurths, J.

Identifying abrupt transitions is a key question in various disciplines. Existing transition detection methods, however, do not rigorously account for time series uncertainties, often neglecting them altogether or assuming them to be independent and qualitatively similar. Here, we introduce a novel approach suited to handle uncertainties by representing the time series as a time-ordered sequence of probability density functions. We show how to detect abrupt transitions in such a sequence using the community structure of networks representing probabilities of recurrence. Using our approach, we detect transitions in global stock indices related to well-known periods of politico-economic volatility. We further uncover transitions in the El Niño-Southern Oscillation which coincide with periods of phase locking with the Pacific Decadal Oscillation. Finally, we provide for the first time an 'uncertainty-aware' framework which validates the hypothesis that ice-rafting events in the North Atlantic during the Holocene were synchronous with a weakened Asian summer monsoon.