Search Results

Now showing 1 - 10 of 65
  • Item
    A Mechanistic Perspective on Plastically Flexible Coordination Polymers
    (Weinheim : Wiley-VCH, 2019) Bhattacharya, Biswajit; Michalchuk, Adam A.L.; Silbernagl, Dorothee; Rautenberg, Max; Schmid, Thomas; Feiler, Torvid; Reimann, Klaus; Ghalgaoui, Ahmed; Sturm, Heinz; Paulus, Beate; Emmerling, Franziska
    Mechanical flexibility in single crystals of covalently bound materials is a fascinating and poorly understood phenomenon. We present here the first example of a plastically flexible one-dimensional (1D) coordination polymer. The compound [Zn(μ-Cl)2(3,5-dichloropyridine)2]n is flexible over two crystallographic faces. Remarkably, the single crystal remains intact when bent to 180°. A combination of microscopy, diffraction, and spectroscopic studies have been used to probe the structural response of the crystal lattice to mechanical bending. Deformation of the covalent polymer chains does not appear to be responsible for the observed macroscopic bending. Instead, our results suggest that mechanical bending occurs by displacement of the coordination polymer chains. Based on experimental and theoretical evidence, we propose a new model for mechanical flexibility in 1D coordination polymers. Moreover, our calculations propose a cause of the different mechanical properties of this compound and a structurally similar elastic material. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Covalency-Driven Preservation of Local Charge Densities in a Metal-to-Ligand Charge-Transfer Excited Iron Photosensitizer
    (Weinheim : Wiley-VCH, 2019) Jay, Raphael M.; Eckert, Sebastian; Vaz da Cruz, Vinicius; Fondell, Mattis; Mitzner, Rolf; Föhlisch, Alexander
    Covalency is found to even out charge separation after photo-oxidation of the metal center in the metal-to-ligand charge-transfer state of an iron photosensitizer. The σ-donation ability of the ligands compensates for the loss of iron 3d electronic charge, thereby upholding the initial metal charge density and preserving the local noble-gas configuration. These findings are enabled through element-specific and orbital-selective time-resolved X-ray absorption spectroscopy at the iron L-edge. Thus, valence orbital populations around the central metal are directly accessible. In conjunction with density functional theory we conclude that the picture of a localized charge-separation is inadequate. However, the unpaired spin density provides a suitable representation of the electron–hole pair associated with the electron-transfer process. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Infrared spectroscopy in superfluid helium droplets
    (Abingdon : Taylor and Francis Ltd., 2019) Verma D.; Tanyag R.M.P.; O’Connell S.M.O.; Vilesov A.F.
    For more than two decades, encapsulation in superfluid helium nanodroplets has served as a reliable technique for probing the structure and dynamics of molecules and clusters at a low temperature of ≈0.37 K. Due to weak interactions between molecules and the host liquid helium, good spectral resolution can usually be achieved, making helium droplets an ideal matrix for spectroscopy in a wide spectral range from infrared to ultraviolet. Furthermore, rotational structure in the spectra of small molecules provides a unique probe for interactions with the superfluid on an atomic scale. This review presents a summary of results and a discussion of recent experimental developments in helium droplet spectroscopy with the emphasis laid on infrared studies. Initially, studies focused on single molecules and have been expanded to larger species, such as metal-molecular clusters, biomolecules, free radicals, ions, and proteins. © 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
  • Item
    Excitation of H2 at large internuclear separation: F1∑+g outer well states and continuum resonances
    (London : Taylor & Francis, 2019) Trivikram, T.M.; Salumbides, E.J.; Jungen, Ch.; Ubachs, W.
    Bound and free quantum resonances of molecular hydrogen exhibiting wave-function density at large internuclear separation, (Formula presented.) 4–5 a.u., are excited via multi-step laser spectroscopy. Highly excited vibrational levels of H (Formula presented.) are prepared via two-photon UV-photolysis of H (Formula presented.) S. Subsequent two-photon Doppler-free precision measurements are performed connecting (Formula presented.) levels with (Formula presented.) outer-well levels. Detection and spectroscopic labelling of the quantum states is assisted by further laser excitation into the auto-ionisation continuum employing a third UV-laser. Level energies of high rotational states ((Formula presented.)) in the outer-well state (Formula presented.) are accurately determined. The three-laser study demonstrates a method for probing resonances in the H (Formula presented.) ionisation continuum with wave-function density at large internuclear separation (Formula presented.) 4–5 a.u., large angular momenta J, and energy range 131,100–133,000 cm-1, a hitherto unexplored territory. © 2019, © 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
  • Item
    XUV double-pulses with femtosecond to 650 ps separation from a multilayer-mirror-based split-and-delay unit at FLASH
    (Chester : IUCr, 2018-8-3) Sauppe, Mario; Rompotis, Dimitrios; Erk, Benjamin; Bari, Sadia; Bischoff, Tobias; Boll, Rebecca; Bomme, Cédric; Bostedt, Christoph; Dörner, Simon; Düsterer, Stefan; Feigl, Torsten; Flückiger, Leonie; Gorkhover, Tais; Kolatzki, Katharina; Langbehn, Bruno; Monserud, Nils; Müller, Erland; Müller, Jan P.; Passow, Christopher; Ramm, Daniel; Rolles, Daniel; Schubert, Kaja; Schwob, Lucas; Senfftleben, Björn; Treusch, Rolf; Ulmer, Anatoli; Weigelt, Holger; Zimbalski, Jannis; Zimmermann, Julian; Möller, Thomas; Rupp, Daniela
    Extreme ultraviolet (XUV) and X-ray free-electron lasers enable new scientific opportunities. Their ultra-intense coherent femtosecond pulses give unprecedented access to the structure of undepositable nanoscale objects and to transient states of highly excited matter. In order to probe the ultrafast complex light-induced dynamics on the relevant time scales, the multi-purpose end-station CAMP at the free-electron laser FLASH has been complemented by the novel multilayer-mirror-based split-and-delay unit DESC (DElay Stage for CAMP) for time-resolved experiments. XUV double-pulses with delays adjustable from zero femtoseconds up to 650 picoseconds are generated by reflecting under near-normal incidence, exceeding the time range accessible with existing XUV split-and-delay units. Procedures to establish temporal and spatial overlap of the two pulses in CAMP are presented, with emphasis on the optimization of the spatial overlap at long time-delays via time-dependent features, for example in ion spectra of atomic clusters.
  • Item
    CAMP@FLASH: an end-station for imaging, electron- and ion-spectroscopy, and pump–probe experiments at the FLASH free-electron laser
    (Chester : IUCr, 2018-8-2) Erk, Benjamin; Müller, Jan P.; Bomme, Cédric; Boll, Rebecca; Brenner, Günter; Chapman, Henry N.; Correa, Jonathan; Düsterer, Stefan; Dziarzhytski, Siarhei; Eisebitt, Stefan; Graafsma, Heinz; Grunewald, Sören; Gumprecht, Lars; Hartmann, Robert; Hauser, Günter; Keitel, Barbara; von Korff Schmising, Clemens; Kuhlmann, Marion; Manschwetus, Bastian; Mercadier, Laurent; Müller, Erland; Passow, Christopher; Plönjes, Elke; Ramm, Daniel; Rompotis, Dimitrios; Rudenko, Artem; Rupp, Daniela; Sauppe, Mario; Siewert, Frank; Schlosser, Dieter; Strüder, Lothar; Swiderski, Angad; Techert, Simone; Tiedtke, Kai; Tilp, Thomas; Treusch, Rolf; Schlichting, Ilme; Ullrich, Joachim; Moshammer, Robert; Möller, Thomas; Rolles, Daniel
    The non-monochromatic beamline BL1 at the FLASH free-electron laser facility at DESY was upgraded with new transport and focusing optics, and a new permanent end-station, CAMP, was installed. This multi-purpose instrument is optimized for electron- and ion-spectroscopy, imaging and pump–probe experiments at free-electron lasers. It can be equipped with various electron- and ion-spectrometers, along with large-area single-photon-counting pnCCD X-ray detectors, thus enabling a wide range of experiments from atomic, molecular, and cluster physics to material and energy science, chemistry and biology. Here, an overview of the layout, the beam transport and focusing capabilities, and the experimental possibilities of this new end-station are presented, as well as results from its commissioning.
  • Item
    Generation of millijoule few-cycle pulses at 5 μm by indirect spectral shaping of the idler in an optical parametric chirped pulse amplifier
    (Washington, DC : Soc., 2018) Bock, Martin; Grafenstein, Lorenz von; Griebner, Uwe; Elsaesser, Thomas
    Spectral pulse shaping in a high-intensity midwave-infrared (MWIR) optical parametric chirped pulse amplifier (OPCPA) operating at 1 kHz repetition rate is reported. We successfully apply a MWIR spatial light modulator (SLM) for the generation of ultrashort idler pulses at 5 μm wavelength. Only bulk optics and active phase control of the 3.5 μm signal pulses via the SLM are employed for generating compressed idler pulses with a duration of 80 fs. The 80-fs pulse duration corresponds to less than five optical cycles at the central wavelength of 5.0 μm. The pulse energy amounts to 1.0 mJ, which translates into a peak power of 10 GW. The generated pulse parameters represent record values for high-intensity MWIR OPCPAs.
  • Item
    X-ray emission from stainless steel foils irradiated by femtosecond petawatt laser pulses
    (Bristol : IOP Publ., 2018) Alkhimova, M.A.; Faenov, A.Ya.; Pikuz, T.A.; Skobelev, I.Yu.; Pikuz, S.A.; Nishiuchi, M.; Sakaki, H.; Pirozhkov, A.S.; Sagisaka, S.; Dover, N.P.; Kondo, Ko.; Ogura, K.; Fukuda, Y.; Kiriyama, H.; Esirkepov, T.; Bulanov, S V.; Andreev, A.; Kando, M.; Zhidkov, A.; Nishitani, K.; Miyahara, T.; Watanabe, Y.; Kodama, R.; Kondo, K.
    We report about nonlinear growth of x-ray emission intensity emitted from plasma generated by femtosecond petawatt laser pulses irradiating stainless steel foils. X-ray emission intensity increases as ∼ I 4.5 with laser intensity I on a target. High spectrally resolved x-ray emission from front and rear surfaces of 5 μm thickness stainless steel targets were obtained at the wavelength range 1.7-2.1 Å, for the first time in experiments at femtosecond petawatt laser facility J-KAREN-P. Total intensity of front x-ray spectra three times dominates to rear side spectra for maximum laser intensity I ≈ 3.21021 W/cm2. Growth of x-ray emission is mostly determined by contribution of bremsstrahlung radiation that allowed estimating bulk electron plasma temperature for various magnitude of laser intensity on target.
  • Item
    Looking inside the tunnelling barrier: II. Co- and counter-rotating electrons at the ‘tunnelling exit’
    (Bristol : IOP Publ., 2018-08-03) Kaushal, Jivesh; Smirnova, Olga
    The initial conditions for electron trajectories at the exit from the tunnelling barrier are often used in strong field models, for example to bridge the first and the second steps of the three-step model celebrated in this issue. Since the analytical R-matrix theory does not rely on the three-step model or the concept of the tunnelling barrier in coordinate space, obtaining the initial conditions for electron trajectories at the barrier exit is, strictly speaking, not necessary to calculate standard observables. Not necessary, but possible—especially when motivated by the occasion of this issue. The opportunity to evaluate such initial conditions emerges as a corollary of analysing sub-barrier kinematics, which includes the interplay of laser and Coulomb fields on the sub-cycle scale (see the companion paper I). We apply our results to discuss the difference in such initial conditions for co- and counter-rotating electrons liberated during strong field ionisation. We derive quantum orbits and classical trajectories describing ionization dynamics of co- and counter-rotating electrons in long-range potentials.
  • Item
    Terahertz magnetic field enhancement in an asymmetric spiral metamaterial
    (Bristol : IOP Publ., 2018-10-25) Polley, Debanjan; Hagström, Nanna Zhou; Schmising, Clemens von Korff; Eisebitt, Stefan; Bonetti, Stefano
    We use finite element simulations in both the frequency and the time-domain to study the terahertz resonance characteristics of a metamaterial (MM) comprising a spiral connected to a straight arm. The MM acts as a RLC circuit whose resonance frequency can be precisely tuned by varying the characteristic geometrical parameters of the spiral: inner and outer radius, width and number of turns. We provide a simple analytical model that uses these geometrical parameters as input to give accurate estimates of the resonance frequency. Finite element simulations show that linearly polarized terahertz radiation efficiently couples to the MM thanks to the straight arm, inducing a current in the spiral, which in turn induces a resonant magnetic field enhancement at the center of the spiral. We observe a large (approximately 40 times) and uniform (over an area of ∼10 μm2) enhancement of the magnetic field for narrowband terahertz radiation with frequency matching the resonance frequency of the MM. When a broadband, single-cycle terahertz pulse propagates towards the MM, the peak magnetic field of the resulting band-passed waveform still maintains a six-fold enhancement compared to the peak impinging field. Using existing laser-based terahertz sources, our MM design allows to generate magnetic fields of the order of 2 T over a time scale of several picoseconds, enabling the investigation of nonlinear ultrafast spin dynamics in table-top experiments. Furthermore, our MM can be implemented to generate intense near-field narrowband, multi-cycle electromagnetic fields to study generic ultrafast resonant terahertz dynamics in condensed matter.