Search Results

Now showing 1 - 8 of 8
  • Item
    Nitrosylation vs. oxidation – How to modulate cold physical plasmas for biological applications
    (San Francisco, California, US : PLOS, 2019) Lackmann, Jan-Wilm; Bruno, Giuliana; Jablonowski, Helena; Kogelheide, Friederike; Offerhaus, Björn; Held, Julian; Schulz-von der Gathen, Volker; Stapelmann, Katharina; von Woedtke, Thomas; Wende, Kristian
    Thiol moieties are major targets for cold plasma-derived nitrogen and oxygen species, making CAPs convenient tools to modulate redox-signaling pathways in cells and tissues. The underlying biochemical pathways are currently under investigation but especially the role of CAP derived RNS is barely understood. Their potential role in protein thiol nitrosylation would be relevant in inflammatory processes such as wound healing and improving their specific production by CAP would allow for enhanced treatment options beyond the current application. The impact of a modified kINPen 09 argon plasma jet with nitrogen shielding on cysteine as a thiol-carrying model substance was investigated by FTIR spectroscopy and high-resolution mass spectrometry. The deposition of short-lived radical species was measured by electron paramagnetic resonance spectroscopy, long-lived species were quantified by ion chromatography (NO2-, NO3-) and xylenol orange assay (H2O2). Product profiles were compared to samples treated with the so-called COST jet, being introduced by a European COST initiative as a reference device, using both reference conditions as well as conditions adjusted to kINPen gas mixtures. While thiol oxidation was dominant under all tested conditions, an Ar + N2/O2 gas compositions combined with a nitrogen curtain fostered nitric oxide deposition and the desired generation of S-nitrosocysteine. Interestingly, the COST-jet revealed significant differences in its chemical properties in comparison to the kINPen by showing a more stable production of RNS with different gas admixtures, indicating a different •NO production pathway. Taken together, results indicate various chemical properties of kINPen and COST-jet as well as highlight the potential of plasma tuning not only by gas admixtures alone but by adjusting the surrounding atmosphere as well.
  • Item
    Femtosecond laser induced step-like structures inside transparent hydrogel due to laser induced threshold reduction
    (San Francisco, California, US : PLOS, 2019) Saerchen, Emanuel; Liedtke-Gruener, Susann; Kopp, Maximilian; Heisterkamp, Alexander; Lubatschowski, Holger; Ripken, Tammo
    In the area of laser material processing, versatile applications for cutting glasses and transparent polymers exist. However, parasitic effects such as the creation of step-like structures appear when laser cutting inside a transparent material. To date, these structures were only described empirically. This work establishes the physical and chemical mechanisms behind the observed effects and describes the influence of process and material parameters onto the creation of step-like structures in hydrogel, Dihydroxyethylmethacrylat (HEMA). By focusing laser pulses in HEMA, reduced pulse separation distance below 50 nm and rise in pulse energy enhances the creation of unintended step-like structures. Spatial resolved Raman-spectroscopy was used to measure the laser induced chemical modification, which results into a reduced breakdown threshold. The reduction in threshold influences the position of optical breakdown for the succeeding laser pulses and consequently leads to the step-like structures. Additionally, the experimental findings were supplemented with numerical simulations of the influence of reduced damage threshold onto the position of optical breakdown.
  • Item
    ColiCoords: A Python package for the analysis of bacterial fluorescence microscopy data
    (San Francisco, California, US : PLOS, 2019) Smit, Jochem H.; Li, Yichen; Warszawik, Eliza M.; Herrmann, Andreas; Cordes, Thorben; Gilestro, Giorgio F
    Single-molecule fluorescence microscopy studies of bacteria provide unique insights into the mechanisms of cellular processes and protein machineries in ways that are unrivalled by any other technique. With the cost of microscopes dropping and the availability of fully automated microscopes, the volume of microscopy data produced has increased tremendously. These developments have moved the bottleneck of throughput from image acquisition and sample preparation to data analysis. Furthermore, requirements for analysis procedures have become more stringent given the demand of various journals to make data and analysis procedures available. To address these issues we have developed a new data analysis package for analysis of fluorescence microscopy data from rod-like cells. Our software ColiCoords structures microscopy data at the single-cell level and implements a coordinate system describing each cell. This allows for the transformation of Cartesian coordinates from transmission light and fluorescence images and single-molecule localization microscopy (SMLM) data to cellular coordinates. Using this transformation, many cells can be combined to increase the statistical power of fluorescence microscopy datasets of any kind. ColiCoords is open source, implemented in the programming language Python, and is extensively documented. This allows for modifications for specific needs or to inspect and publish data analysis procedures. By providing a format that allows for easy sharing of code and associated data, we intend to promote open and reproducible research. The source code and documentation can be found via the project’s GitHub page.
  • Item
    Side effects by oral application of atmospheric pressure plasma on the mucosa in mice
    (San Francisco, California, US : PLOS, 2019) Jablonowski, Lukasz; Kocher, Thomas; Schindler, Axel; Müller, Karolina; Dombrowski, Frank; von Woedtke, Thomas; Arnold, Thomas; Lehmann, Antje; Rupf, Stefan; Evert, Matthias; Evert, Katja
    Cold atmospheric pressure plasma (CAP) has been investigated with promising results for peri-implant diseases treatment. However, prior to in-vivo applications of CAP sources in humans, short-term harmful mucosal damage or other unwanted side effects have to be reviewed. 180 male mice (B6C3F1) were divided into twelve treatment groups (n = 15). The right buccal cheek mucosa was treated with CAP. The first and second group each received continuous 10 sec irradiation with 2 different plasma sources (kINPen09, PS-MWM). The third group was treated with the kINPen09 for one minute. Control groups were treated with a corresponding dose of ultraviolet light for 8 seconds or 48 seconds and the other one was left untreated. The animals were weighed before and after treatment. The animals were sacrificed one day or one week after exposure. Stained tissue samples were histologically examined for tissue damage independently by two experienced pathologists. One day after CAP treatment histological analysis showed focal mucosal erosion with superficial ulceration and necrosis accompanied by a mild inflammatory reaction. One week after CAP treatment, the mucosal defects were completely re-epithelialized, associated with remnants of granulation tissue in the stroma irrespective of treatment duration. Furthermore, no cytological atypia was found and no severe weight loss occurred. The control groups did not show any alterations at all. CAP treatment led to a superficial mucosal damage that healed within few days. Nonetheless, further long-term experiments are necessary to exclude undesirable side effects after longer observation time. Particularly, potential carcinogenic effects must be ruled out prior to the application of CAP treatment in daily dental practice.
  • Item
    Parameterization-induced uncertainties and impacts of crop management harmonization in a global gridded crop model ensemble
    (San Francisco, California, US : PLOS, 2019) Folberth, Christian; Elliott, Joshua; Müller, Christoph; Balkovič, Juraj; Chryssanthacopoulos, James; Izaurralde, Roberto C.; Jones, Curtis D.; Khabarov, Nikolay; Liu, Wenfeng; Reddy, Ashwan; Schmid, Erwin; Skalský, Rastislav; Yang, Hong; Arneth, Almut; Ciais, Philippe; Deryng, Delphine; Lawrence, Peter J.; Olin, Stefan; Pugh, Thomas A.M.; Ruane, Alex C.; Wang, Xuhui
    Global gridded crop models (GGCMs) combine agronomic or plant growth models with gridded spatial input data to estimate spatially explicit crop yields and agricultural externalities at the global scale. Differences in GGCM outputs arise from the use of different biophysical models, setups, and input data. GGCM ensembles are frequently employed to bracket uncertainties in impact studies without investigating the causes of divergence in outputs. This study explores differences in maize yield estimates from five GGCMs based on the public domain field-scale model Environmental Policy Integrated Climate (EPIC) that participate in the AgMIP Global Gridded Crop Model Intercomparison initiative. Albeit using the same crop model, the GGCMs differ in model version, input data, management assumptions, parameterization, and selection of subroutines affecting crop yield estimates via cultivar distributions, soil attributes, and hydrology among others. The analyses reveal inter-annual yield variability and absolute yield levels in the EPIC-based GGCMs to be highly sensitive to soil parameterization and crop management. All GGCMs show an intermediate performance in reproducing reported yields with a higher skill if a static soil profile is assumed or sufficient plant nutrients are supplied. An in-depth comparison of setup domains for two EPIC-based GGCMs shows that GGCM performance and plant stress responses depend substantially on soil parameters and soil process parameterization, i.e. hydrology and nutrient turnover, indicating that these often neglected domains deserve more scrutiny. For agricultural impact assessments, employing a GGCM ensemble with its widely varying assumptions in setups appears the best solution for coping with uncertainties from lack of comprehensive global data on crop management, cultivar distributions and coefficients for agro-environmental processes. However, the underlying assumptions require systematic specifications to cover representative agricultural systems and environmental conditions. Furthermore, the interlinkage of parameter sensitivity from various domains such as soil parameters, nutrient turnover coefficients, and cultivar specifications highlights that global sensitivity analyses and calibration need to be performed in an integrated manner to avoid bias resulting from disregarded core model domains. Finally, relating evaluations of the EPIC-based GGCMs to a wider ensemble based on individual core models shows that structural differences outweigh in general differences in configurations of GGCMs based on the same model, and that the ensemble mean gains higher skill from the inclusion of structurally different GGCMs. Although the members of the wider ensemble herein do not consider crop-soil-management interactions, their sensitivity to nutrient supply indicates that findings for the EPIC-based sub-ensemble will likely become relevant for other GGCMs with the progressing inclusion of such processes.
  • Item
    One-shot phase-recovery using a cellphone RGB camera on a Jamin-Lebedeff microscope
    (San Francisco, California, US : PLOS, 2019) Diederich, Benedict; Marsikova, Barbora; Amos, Brad; Heintzmann, Rainer
    Jamin-Lebedeff (JL) polarization interference microscopy is a classical method for determining the change in the optical path of transparent tissues. Whilst a differential interference contrast (DIC) microscopy interferes an image with itself shifted by half a point spread function, the shear between the object and reference image in a JL-microscope is about half the field of view. The optical path difference (OPD) between the sample and reference region (assumed to be empty) is encoded into a color by white-light interference. From a color-table, the Michel-Levy chart, the OPD can be deduced. In cytology JL-imaging can be used as a way to determine the OPD which closely corresponds to the dry mass per area of cells in a single image. Like in other interference microscopy methods (e.g. holography), we present a phase retrieval method relying on single-shot measurements only, thus allowing real-time quantitative phase measurements. This is achieved by adding several customized 3D-printed parts (e.g. rotational polarization-filter holders) and a modern cellphone with an RGB-camera to the Jamin-Lebedeff setup, thus bringing an old microscope back to life. The algorithm is calibrated using a reference image of a known phase object (e.g. optical fiber). A gradient-descent based inverse problem generates an inverse look-up-table (LUT) which is used to convert the measured RGB signal of a phase-sample into an OPD. To account for possible ambiguities in the phase-map or phase-unwrapping artifacts we introduce a total-variation based regularization. We present results from fixed and living biological samples as well as reference samples for comparison.
  • Item
    A meta-analysis of crop response patterns to nitrogen limitation for improved model representation
    (San Francisco, California, US : PLOS, 2019) Seufert, Verena; Granath, Gustaf; Müller, Christoph
    The representation of carbon-nitrogen (N) interactions in global models of the natural or managed land surface remains an important knowledge gap. To improve global process-based models we require a better understanding of how N limitation affects photosynthesis and plant growth. Here we present the findings of a meta-analysis to quantitatively assess the impact of N limitation on source (photosynthate production) versus sink (photosynthate use) activity, based on 77 highly controlled experimental N availability studies on 11 crop species. Using meta-regressions, we find that it can be insufficient to represent N limitation in models merely as inhibiting carbon assimilation, because in crops complete N limitation more strongly influences leaf area expansion (-50%) than photosynthesis (-34%), while leaf starch is accumulating (+83%). Our analysis thus offers support for the hypothesis of sink limitation of photosynthesis and encourages the exploration of more sink-driven crop modelling approaches. We also show that leaf N concentration changes with N availability and that the allocation of N to Rubisco is reduced more strongly compared to other photosynthetic proteins at low N availability. Furthermore, our results suggest that different crop species show generally similar response patterns to N limitation, with the exception of leguminous crops, which respond differently. Our meta-analysis offers lessons for the improved depiction of N limitation in global terrestrial ecosystem models, as well as highlights knowledge gaps that need to be filled by future experimental studies on crop N limitation response.
  • Item
    Development of a miniaturized protein microarray as a new serological IgG screening test for zoonotic agents and production diseases in pigs
    (San Francisco, California, US : PLOS, 2019) Loreck, Katharina; Mitrenga, Sylvia; Meemken, Diana; Heinze, Regina; Reissig, Annett; Mueller, Elke; Ehricht, Ralf; Engemann, Claudia; Greiner, Matthias
    In order to monitor the occurrence of zoonotic agents in pig herds as well as to improve herd health management, the development of new cost-effective diagnostic methods for pigs is necessary. In this study, a protein microarray-based assay for the simultaneous detection of immunoglobulin G (IgG) antibodies against different zoonotic agents and pathogens causing production diseases in pigs was developed. Therefore, antigens of ten different important swine pathogens (Toxoplasma gondii, Yersinia enterocolitica, Salmonella spp., Trichinella spp., Mycobacterium avium, Hepatitis E virus, Mycoplasma hyopneumoniae, Actinobacillus pleuropneumoniae, the porcine reproductive and respiratory syndrome virus, Influenza A virus) were spotted and covalently immobilized as ‘antigen-spots’ on microarray chips in order to test pig serum for the occurrence of antibodies. Pig serum was sampled at three German abattoirs and ELISA tests for the different pathogens were conducted with the purpose of creating a panel of reference samples for microarray analysis. To evaluate the accuracy of the antigens on the microarray, receiver operating characteristic (ROC) curve analysis using the ELISA test results as reference was performed for the different antigens. High area under curve values were achieved for the antigens of two zoonotic agents: Toxoplasma gondii (0.91), Yersinia enterocolitica (0.97) and for three production diseases: Actinobacillus pleuropneumoniae (0.77), Mycoplasma hyopneumoniae (0.94) and the porcine reproductive and respiratory syndrome virus (0.87). With the help of the newly developed microarray assay, collecting data on the occurrence of antibodies against zoonotic agents and production diseases in pig herds could be minimized to one measurement, resulting in an efficient screening test.