Search Results

Now showing 1 - 1 of 1
  • Item
    Optimizing Variable-Axial Fiber-Reinforced Composite Laminates: The Direct Fiber Path Optimization Concept
    (London [u.a.] : Taylor & Francis, 2019) Bittrich, Lars; Spickenheuer, Axel; Almeida Jr., José Humberto S.; Müller, Sascha; Kroll, Lothar; Heinrich, Gert
    The concept of aligning reinforcing fibers in arbitrary directions offers a new perception of exploiting the anisotropic characteristic of the carbon fiber-reinforced polymer (CFRP) composites. Complementary to the design concept of multiaxial composites, a laminate reinforced with curvilinear fibers is called variable-axial (also known as variable stiffness and variable angle tow). The Tailored Fiber Placement (TFP) technology is well capable of manufacturing textile preforming with a variable-axial fiber design by using adapted embroidery machines. This work introduces a novel concept for simulation and optimization of curvilinear fiber-reinforced composites, where the novelty relies on the local optimization of both fiber angle and intrinsic thickness build-up concomitantly. This framework is called Direct Fiber Path Optimization (DFPO). Besides the description of DFPO, its capabilities are exemplified by optimizing a CFRP open-hole tensile specimen. Key results show a clear improvement compared to the current often used approach of applying principal stress trajectories for a variable-axial reinforcement pattern. © 2019 Lars Bittrich et al.