Search Results

Now showing 1 - 2 of 2
  • Item
    Influence of MoS2 on activity and stability of carbon nitride in photocatalytic hydrogen production
    (Basel : MDPI AG, 2019) Sivasankaran, R.P.; Rockstroh, N.; Kreyenschulte, C.R.; Bartling, S.; Lund, H.; Acharjya, A.; Junge, H.; Thomas, A.; Brückner, A.
    MoS2/C3N4 (MS-CN) composite photocatalysts have been synthesized by three different methods, i.e., in situ-photodeposition, sonochemical, and thermal decomposition. The crystal structure, optical properties, chemical composition, microstructure, and electron transfer properties were investigated by X-ray diffraction, UV-vis diffuse reflectance spectroyscopy, X-ray photoelectron spectroscopy, electron microscopy, photoluminescence, and in situ electron paramagnetic resonance spectroscopy. During photodeposition, the 2H MoS2 phase was formed upon reduction of [MoS4]2− by photogenerated conduction band electrons and then deposited on the surface of CN. A thin crystalline layer of 2H MoS2 formed an intimate interfacial contact with CN that favors charge separation and enhances the photocatalytic activity. The 2H MS-CN phase showed the highest photocatalytic H2 evolution rate (2342 µmol h−1 g−1, 25 mg catalyst/reaction) under UV-vis light irradiation in the presence of lactic acid as sacrificial reagent and Pt as cocatalyst.
  • Item
    Relevance of interactions between starch-based coatings and plum fruit surfaces: A physical-chemical analysis
    (Basel : MDPI AG, 2019) Basiak, Ewelina; Geyer, Martin; Debeaufort, Frédéric; Lenart, Andrzej; Linke, Manfred
    In order to extend the shelf life of the fruit, improve appearance, and to keep all nutrition properties of the plum from diminishing, edible coatings comprised of wheat starch and wheat starch–whey protein isolate (in ratio 80/20) were created. Stand-alone films were produced to assess properties which helped to understand the phenomena occurring on the surface level of coated plums. The properties of coatings based on starch are similar to starch coatings containing oil because the natural epicuticular wax layer of plums merges with coating materials. Adding oil doubled the contact angle value and the dispersive component of the surface tension. The workings of adhesion and cohesion, spreading coefficient, water absorption, water content, and solubility in water of the films decreased. Similar processes were observed on the fruits’ surface. In appearance, the coating process is similar to polishing the plum surface for removing crystalline wax. The color parameters of coated fruits did not significantly change. Newly formed bonds or interactions established between starch, whey proteins, water, glycerol, and oil are displayed by Fourier transform infrared (FTIR) analysis. This work revealed how the interactions between the epicuticular wax on the fruit’s surface and the hydrocolloid-based coatings affect the efficiency of the coatings. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.