Search Results

Now showing 1 - 2 of 2
  • Item
    Cargo shuttling by electrochemical switching of core–shell microgels obtained by a facile one-shot polymerization
    (Cambridge : RSC, 2019) Mergel, Olga; Schneider, Sabine; Tiwari, Rahul; Kühn, Philipp T.; Keskin, Damla; Stuart, Marc C. A.; Schöttner, Sebastian; de Kanter, Martinus; Noyong, Michael; Caumanns, Tobias; Mayer, Joachim; Janzen, Christoph; Simon, Ulrich; Gallei, Markus; Wöll, Dominik; van Rijn, Patrick; Plamper, Felix A.
    Controlling and understanding the electrochemical properties of electroactive polymeric colloids is a highly topical but still a rather unexplored field of research. This is especially true when considering more complex particle architectures like stimuli-responsive microgels, which would entail different kinetic constraints for charge transport within one particle. We synthesize and electrochemically address dual stimuli responsive core-shell microgels, where the temperature-responsiveness modulates not only the internal structure, but also the microgel electroactivity both on an internal and on a global scale. In detail, a facile one-step precipitation polymerization results in architecturally advanced poly(N-isopropylacrylamide-co-vinylferrocene) P(NIPAM-co-VFc) microgels with a ferrocene (Fc)-enriched (collapsed/hard) core and a NIPAM-rich shell. While the remaining Fc units in the shell are electrochemically accessible, the electrochemical activity of Fc in the core is limited due to the restricted mobility of redox active sites and therefore restricted electron transfer in the compact core domain. Still, prolonged electrochemical action and/or chemical oxidation enable a reversible adjustment of the internal microgel structure from core-shell microgels with a dense core to completely oxidized microgels with a highly swollen core and a denser corona. The combination of thermo-sensitive and redox-responsive units being part of the network allows for efficient amplification of the redox response on the overall microgel dimension, which is mainly governed by the shell. Further, it allows for an electrochemical switching of polarity (hydrophilicity/hydrophobicity) of the microgel, enabling an electrochemically triggered uptake and release of active guest molecules. Hence, bactericidal drugs can be released to effectively kill bacteria. In addition, good biocompatibility of the microgels in cell tests suggests suitability of the new microgel system for future biomedical applications. © 2019 The Royal Society of Chemistry.
  • Item
    The influence of partial replacement of Cu with Ga on the corrosion behavior of Ti40Zr10Cu36PD14 metallic glasses
    (Bristol : IOP Publishing, 2019) Wei, Qi; Gostin, Petre Flaviu; Addison, Owen; Reed, Daniel; Calin, Mariana; Bera, Supriya; Ramasamy, Parthiban; Davenport, Alison
    TiZrCuPdGa metallic glasses are under consideration for small dental biomedical implants. There is interest in replacing some of the Cu with Ga to improve the glass-forming ability and biocompatibility. Ti40Zr10Cu36-xPd14Gax (x = 0, 1, 2, 4, 8 and 10 at.%) metallic glasses in rod and ribbon forms were fabricated by mould casting and melt spinning, respectively, and electrochemically tested in a 0.9wt.% NaCl (0.154 M) solution. It has been shown that for both rod and ribbon samples Ga levels up to 8% have no significant effect on passive current density, pitting potential or cathodic reactivity in 0.9% NaCl at 37°C. Different pitting potential and corrosion potential values were found when ribbon and rod samples of the same composition were compared for all compositions apart from the one containing the highest Ga level (10%). This was attributed to structural relaxation occurring as a result of the slower cooling rates during casting rods compared with melt-spinning ribbons. Substitution of Ga for Cu in these metallic glasses therefore expected to have no significant effect on corrosion susceptibility. © The Author(s) 2019.