Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Tomonaga–Luttinger liquid behavior and spinon confinement in YbAlO 3

2019, Wu, L.S., Nikitin, S.E., Wang, Z., Zhu, W., Batista, C.D., Tsvelik, A.M., Samarakoon, A.M., Tennant, D.A., Brando, M., Vasylechko, L., Frontzek, M., Savici, A.T., Sala, G., Ehlers, G., Christianson, A.D., Lumsden, M.D., Podlesnyak, A.

Low dimensional quantum magnets are interesting because of the emerging collective behavior arising from strong quantum fluctuations. The one-dimensional (1D) S = 1/2 Heisenberg antiferromagnet is a paradigmatic example, whose low-energy excitations, known as spinons, carry fractional spin S = 1/2. These fractional modes can be reconfined by the application of a staggered magnetic field. Even though considerable progress has been made in the theoretical understanding of such magnets, experimental realizations of this low-dimensional physics are relatively rare. This is particularly true for rare-earth-based magnets because of the large effective spin anisotropy induced by the combination of strong spin–orbit coupling and crystal field splitting. Here, we demonstrate that the rare-earth perovskite YbAlO3 provides a realization of a quantum spin S = 1/2 chain material exhibiting both quantum critical Tomonaga–Luttinger liquid behavior and spinon confinement–deconfinement transitions in different regions of magnetic field–temperature phase diagram.

Loading...
Thumbnail Image
Item

Network-based identification and characterization of teleconnections on different scales

2019, Agarwal, Ankit, Caesar, Levke, Marwan, Norbert, Maheswaran, Rathinasamy, Merz, Bruno, Kurths, Jürgen

Sea surface temperature (SST) patterns can – as surface climate forcing – affect weather and climate at large distances. One example is El Niño-Southern Oscillation (ENSO) that causes climate anomalies around the globe via teleconnections. Although several studies identified and characterized these teleconnections, our understanding of climate processes remains incomplete, since interactions and feedbacks are typically exhibited at unique or multiple temporal and spatial scales. This study characterizes the interactions between the cells of a global SST data set at different temporal and spatial scales using climate networks. These networks are constructed using wavelet multi-scale correlation that investigate the correlation between the SST time series at a range of scales allowing instantaneously deeper insights into the correlation patterns compared to traditional methods like empirical orthogonal functions or classical correlation analysis. This allows us to identify and visualise regions of – at a certain timescale – similarly evolving SSTs and distinguish them from those with long-range teleconnections to other ocean regions. Our findings re-confirm accepted knowledge about known highly linked SST patterns like ENSO and the Pacific Decadal Oscillation, but also suggest new insights into the characteristics and origins of long-range teleconnections like the connection between ENSO and Indian Ocean Dipole.