Search Results

Now showing 1 - 10 of 29
  • Item
    Guidance of mesenchymal stem cells on fibronectin structured hydrogel films
    (San Francisco, California, US : PLOS, 2014) Kasten, Annika; Naser, Tamara; Brüllhoff, Kristina; Fiedler, Jörg; Müller, Petra; Möller, Martin; Rychly, Joachim; Groll, Jürgen; Brenner, Rolf E.; Engler, Adam J.
    Designing of implant surfaces using a suitable ligand for cell adhesion to stimulate specific biological responses of stem cells will boost the application of regenerative implants. For example, materials that facilitate rapid and guided migration of stem cells would promote tissue regeneration. When seeded on fibronectin (FN) that was homogeneously immmobilized to NCO-sP(EO-stat-PO), which otherwise prevents protein binding and cell adhesion, human mesenchymal stem cells (MSC) revealed a faster migration, increased spreading and a more rapid organization of different cellular components for cell adhesion on fibronectin than on a glass surface. To further explore, how a structural organization of FN controls the behavior of MSC, adhesive lines of FN with varying width between 10 µm and 80 µm and spacings between 5 µm and 20 µm that did not allow cell adhesion were generated. In dependance on both line width and gaps, cells formed adjacent cell contacts, were individually organized in lines, or bridged the lines. With decreasing sizes of FN lines, speed and directionality of cell migration increased, which correlated with organization of the actin cytoskeleton, size and shape of the nuclei as well as of focal adhesions. Together, defined FN lines and gaps enabled a fine tuning of the structural organization of cellular components and migration. Microstructured adhesive substrates can mimic the extracellular matrix in vivo and stimulate cellular mechanisms which play a role in tissue regeneration.
  • Item
    Monoclonal Antibodies 13A4 and AC133 Do Not Recognize the Canine Ortholog of Mouse and Human Stem Cell Antigen Prominin-1 (CD133)
    (San Francisco, California, US : PLOS, 2016) Thamm, Kristina; Graupner, Sylvi; Werner, Carsten; Huttner, Wieland B.; Corbeil, Denis; Nabi, Ivan R
    The pentaspan membrane glycoprotein prominin-1 (CD133) is widely used in medicine as a cell surface marker of stem and cancer stem cells. It has opened new avenues in stem cell-based regenerative therapy and oncology. This molecule is largely used with human samples or the mouse model, and consequently most biological tools including antibodies are directed against human and murine prominin-1. Although the general structure of prominin-1 including its membrane topology is conserved throughout the animal kingdom, its primary sequence is poorly conserved. Thus, it is unclear if anti-human and -mouse prominin-1 antibodies cross-react with their orthologs in other species, especially dog. Answering this issue is imperative in light of the growing number of studies using canine prominin-1 as an antigenic marker. Here, we address this issue by cloning the canine prominin-1 and use its overexpression as a green fluorescent protein fusion protein in Madin-Darby canine kidney cells to determine its immunoreactivity with antibodies against human or mouse prominin-1. We used immunocytochemistry, flow cytometry and immunoblotting techniques and surprisingly found no cross-species immunoreactivity. These results raise some caution in data interpretation when anti-prominin-1 antibodies are used in interspecies studies.
  • Item
    Discovery of chitin in skeletons of non-verongiid Red Sea demosponges
    (San Francisco, California, US : PLOS, 2018) Ehrlich, Hermann; Shaala, Lamiaa A.; Youssef, Diaa T. A.; Żółtowska- Aksamitowska, Sonia; Tsurkan, Mikhail; Galli, Roberta; Meissner, Heike; Wysokowski, Marcin; Petrenko, Iaroslav; Tabachnick, Konstantin R.; Ivanenko, Viatcheslav N.; Bechmann, Nicole; Joseph, Yvonne; Jesionowski, Teofil
    Marine demosponges (Porifera: Demospongiae) are recognized as first metazoans which have developed over millions of years of evolution effective survival strategies based on unique metabolic pathways to produce both biologically active secondary metabolites and biopolymer-based stiff skeletons with 3D architecture. Up to date, among marine demosponges, only representatives of the Verongiida order have been known to synthetize biologically active substances as well as skeletons made of structural polysaccharide chitin. This work, to our knowledge, demonstrates for the first time that chitin is an important structural component within skeletons of non-verongiid demosponges Acarnus wolffgangi and Echinoclathria gibbosa collected in the Red Sea. Calcofluor white staining, FTIR and Raman analysis, ESI-MS, SEM, and fluorescence microscopy as well as a chitinase digestion assay were applied in order to confirm, with strong evidence, the finding of α-chitin in the skeleton of both species. We suggest that, the finding of chitin within these representatives of Poecilosclerida order is a promising step in the evaluation of these sponges as novel renewable sources for both biologically active metabolites and chitin, which are of prospective application for pharmacology and biomedicine.
  • Item
    Simultaneous statistical inference for epigenetic data
    (San Francisco, California, US : PLOS, 2015) Schildknecht, Konstantin; Olek, Sven; Dickhaus, Thorsten
    Epigenetic research leads to complex data structures. Since parametric model assumptions for the distribution of epigenetic data are hard to verify we introduce in the present work a nonparametric statistical framework for two-group comparisons. Furthermore, epigenetic analyses are often performed at various genetic loci simultaneously. Hence, in order to be able to draw valid conclusions for specific loci, an appropriate multiple testing correction is necessary. Finally, with technologies available for the simultaneous assessment of many interrelated biological parameters (such as gene arrays), statistical approaches also need to deal with a possibly unknown dependency structure in the data. Our statistical approach to the nonparametric comparison of two samples with independent multivariate observables is based on recently developed multivariate multiple permutation tests. We adapt their theory in order to cope with families of hypotheses regarding relative effects. Our results indicate that the multivariate multiple permutation test keeps the pre-assigned type I error level for the global null hypothesis. In combination with the closure principle, the family-wise error rate for the simultaneous test of the corresponding locus/parameter-specific null hypotheses can be controlled. In applications we demonstrate that group differences in epigenetic data can be detected reliably with our methodology.
  • Item
    Effect on healthcare utilization and costs of spinal manual therapy for acute low back pain in routine care: A propensity score matched cohort study
    (San Francisco, California, US : PLOS, 2017) Walker, Jochen; Mertens, Ulf Kai; Schmidt, Carsten Oliver; Chenot, Jean-François
    Spinal manual therapy (SMT) is a popular treatment option for low back pain (LBP). The aim of our analysis was to evaluate the effects of manual therapy delivered by general practitioners and ambulatory orthopedic surgeons in routine care on follow up consultations, sick leave, health service utilization and costs for acute LBP compared to matched patients not receiving manual therapy. This is a propensity score matched cohort study based on health claims data. We identified a total of 113.652 adult patients with acute LBP and no coded red flags of whom 21.021 (18%) received SMT by physicians. In the final analysis 17.965 patients in each group could be matched. Balance on patients' coded characteristics, comorbidity and prior health service utilization was achieved. The provision of SMT for acute LBP had no relevant impact on follow up visits and days of sick leave for LBP in the index billing period and the following year. SMT was associated with a higher proportion of imaging studies for LBP (30.6% vs. 23%, SMD: 0.164 [95% CI 0.143-0.185]). SMT did not lead to meaningful savings by replacing other health services for LBP. SMT for acute non-specific LBP in routine care was not clinically meaningful effective to reduce sick leave and reconsultation rates compared to no SMT and did not lead to meaningful savings by replacing other health services from the perspective of health insurance. This does not imply that SMT is ineffective but might reflect a problem with selection of suitable patients and the quality and quantity of SMT in routine care. National Manual Medicine societies should state clearly that imaging is not routinely needed prior to SMT in patients with low suspicion of presence of red flags and monitor the quality of provided services.
  • Item
    Nonlinear Structured Illumination Using a Fluorescent Protein Activating at the Readout Wavelength
    (San Francisco, California, US : PLOS, 2016) Lu-Walther, Hui-Wen; Hou, Wenya; Kielhorn, Martin; Arai, Yoshiyuki; Nagai, Takeharu; Kessels, Michael M.; Qualmann, Britta; Heintzmann, Rainer
    Structured illumination microscopy (SIM) is a wide-field technique in fluorescence microscopy that provides fast data acquisition and two-fold resolution improvement beyond the Abbe limit. We observed a further resolution improvement using the nonlinear emission response of a fluorescent protein. We demonstrated a two-beam nonlinear structured illumination microscope by introducing only a minor change into the system used for linear SIM (LSIM). To achieve the required nonlinear dependence in nonlinear SIM (NL-SIM) we exploited the photoswitching of the recently introduced fluorophore Kohinoor. It is particularly suitable due to its positive contrast photoswitching characteristics. Contrary to other reversibly photoswitchable fluorescent proteins which only have high photostability in living cells, Kohinoor additionally showed little degradation in fixed cells over many switching cycles.
  • Item
    Investigating the Mutagenicity of a Cold Argon-Plasma Jet in an HET-MN Model
    (San Francisco, California, US : PLOS, 2016) Kluge, Susanne; Bekeschus, Sander; Bender, Claudia; Benkhai, Hicham; Sckell, Axel; Below, Harald; Stope, Matthias B.; Kramer, Axel; Yousfi, Mohammed
    Objective: So-called cold physical plasmas for biomedical applications generate reactive oxygen and nitrogen species and the latter can trigger DNA damage at high concentrations. Therefore, the mutagenic risks of a certified atmospheric pressure argon plasma jet (kINPen MED) and its predecessor model (kINPen 09) were assessed. Methods: Inner egg membranes of fertilized chicken eggs received a single treatment with either the kINPen 09 (1.5, 2.0, or 2.5 min) or the kINPen MED (3, 4, 5, or 10 min). After three days of incubation, blood smears (panoptic May-Grünwald-Giemsa stain) were performed, and 1000 erythrocytes per egg were evaluated for the presence of polychromatic and normochromic nuclear staining as well as nuclear aberrations and binucleated cells (hen’s egg test for micronuclei induction, HET-MN). At the same time, the embryo mortality was documented. For each experiment, positive controls (cyclophosphamide and methotrexate) and negative controls (NaCl-solution, argon gas) were included. Additionally, the antioxidant potential of the blood plasma was assessed by ascorbic acid oxidation assay after treatment. Results: For both plasma sources, there was no evidence of genotoxicity, although at the longest plasma exposure time of 10 min the mortality of the embryos exceeded 40%. The antioxidant potential in the egg’s blood plasma was not significantly reduced immediately (p = 0.32) or 1 h (p = 0.19) post exposure to cold plasma. Conclusion: The longest plasma treatment time with the kINPen MED was 5–10 fold above the recommended limit for treatment of chronic wounds in clinics. We did not find mutagenic effects for any plasma treatment time using the either kINPen 09 or kINPen MED. The data provided with the current study seem to confirm the lack of a genotoxic potential suggesting that a veterinary or clinical application of these argon plasma jets does not pose mutagenic risks.
  • Item
    Sutureless fixation of amniotic membrane for therapy of ocular surface disorders
    (San Francisco, California, US : PLOS, 2015) Kotomin, Ilya; Valtink, Monika; Hofmann, Kai; Frenzel, Annika; Morawietz, Henning; Werner, Carsten; Funk, Richard H. W.; Engelmann, Katrin; Taylor, Andrew W
    Amniotic membrane is applied to the diseased ocular surface to stimulate wound healing and tissue repair, because it releases supportive growth factors and cytokines. These effects fade within about a week after application, necessitating repeated application. Generally, amniotic membrane is fixed with sutures to the ocular surface, but surgical intervention at the inflamed or diseased site can be detrimental. Therefore, we have developed a system for the mounting of amniotic membrane between two rings for application to a diseased ocular surface without surgical intervention (sutureless amniotic membrane transplantation). With this system, AmnioClip, amniotic membrane can be applied like a large contact lens. First prototypes were tested in an experiment on oneself for wearing comfort. The final system was tested on 7 patients in a pilot study. A possible influence of the ring system on the biological effects of amniotic membrane was analyzed by histochemistry and by analyzing the expression of vascular endothelial growth factor-A (VEGF-A), hepatocyte growth factor (HGF), fibroblast growth factor 2 (FGF 2) and pigment epithelium-derived factor (PEDF) from amniotic membranes before and after therapeutic application. The final product, AmnioClip, showed good tolerance and did not impair the biological effects of amniotic membrane. VEGF-A and PEDF mRNA was expressed in amniotic membrane after storage and mounting before transplantation, but was undetectable after a 7-day application period. Consequently, transplantation of amniotic membranes with AmnioClip provides a sutureless and hence improved therapeutic strategy for corneal surface disorders.
  • Item
    A meta-analysis of crop response patterns to nitrogen limitation for improved model representation
    (San Francisco, California, US : PLOS, 2019) Seufert, Verena; Granath, Gustaf; Müller, Christoph
    The representation of carbon-nitrogen (N) interactions in global models of the natural or managed land surface remains an important knowledge gap. To improve global process-based models we require a better understanding of how N limitation affects photosynthesis and plant growth. Here we present the findings of a meta-analysis to quantitatively assess the impact of N limitation on source (photosynthate production) versus sink (photosynthate use) activity, based on 77 highly controlled experimental N availability studies on 11 crop species. Using meta-regressions, we find that it can be insufficient to represent N limitation in models merely as inhibiting carbon assimilation, because in crops complete N limitation more strongly influences leaf area expansion (-50%) than photosynthesis (-34%), while leaf starch is accumulating (+83%). Our analysis thus offers support for the hypothesis of sink limitation of photosynthesis and encourages the exploration of more sink-driven crop modelling approaches. We also show that leaf N concentration changes with N availability and that the allocation of N to Rubisco is reduced more strongly compared to other photosynthetic proteins at low N availability. Furthermore, our results suggest that different crop species show generally similar response patterns to N limitation, with the exception of leguminous crops, which respond differently. Our meta-analysis offers lessons for the improved depiction of N limitation in global terrestrial ecosystem models, as well as highlights knowledge gaps that need to be filled by future experimental studies on crop N limitation response.
  • Item
    The Global Gridded Crop Model Intercomparison phase 1 simulation dataset
    (London : Nature Publ. Group, 2019) Müller, Christoph; Elliott, Joshua; Kelly, David; Arneth, Almut; Balkovic, Juraj; Ciais, Philippe; Deryng, Delphine; Folberth, Christian; Hoek, Steven; Izaurralde, Roberto C.; Jones, Curtis D.; Khabarov, Nikolay; Lawrence, Peter; Liu, Wenfeng; Olin, Stefan; Pugh, Thomas A. M.; Reddy, Ashwan; Rosenzweig, Cynthia; Ruane, Alex C.; Sakurai, Gen; Schmid, Erwin; Skalsky, Rastislav; Wang, Xuhui; de Wit, Allard; Yang, Hong
    The Global Gridded Crop Model Intercomparison (GGCMI) phase 1 dataset of the Agricultural Model Intercomparison and Improvement Project (AgMIP) provides an unprecedentedly large dataset of crop model simulations covering the global ice-free land surface. The dataset consists of annual data fields at a spatial resolution of 0.5 arc-degree longitude and latitude. Fourteen crop modeling groups provided output for up to 11 historical input datasets spanning 1901 to 2012, and for up to three different management harmonization levels. Each group submitted data for up to 15 different crops and for up to 14 output variables. All simulations were conducted for purely rainfed and near-perfectly irrigated conditions on all land areas irrespective of whether the crop or irrigation system is currently used there. With the publication of the GGCMI phase 1 dataset we aim to promote further analyses and understanding of crop model performance, potential relationships between productivity and environmental impacts, and insights on how to further improve global gridded crop model frameworks. We describe dataset characteristics and individual model setup narratives. © 2019, The Author(s).