Search Results

Now showing 1 - 10 of 140
  • Item
    Microfluidic colloid filtration
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2016) Linkhorst, John; Beckmann, Torsten; Go, Dennis; Kuehne, Alexander J. C.; Wessling, Matthias
    Filtration of natural and colloidal matter is an essential process in today’s water treatment processes. The colloidal matter is retained with the help of micro- and nanoporous synthetic membranes. Colloids are retained in a “cake layer” – often coined fouling layer. Membrane fouling is the most substantial problem in membrane filtration: colloidal and natural matter build-up leads to an increasing resistance and thus decreasing water transport rate through the membrane. Theoretical models exist to describe macroscopically the hydrodynamic resistance of such transport and rejection phenomena; however, visualization of the various phenomena occurring during colloid retention is extremely demanding. Here we present a microfluidics based methodology to follow filter cake build up as well as transport phenomena occuring inside of the fouling layer. The microfluidic colloidal filtration methodology enables the study of complex colloidal jamming, crystallization and melting processes as well as translocation at the single particle level.
  • Item
    Cytochrome C oxidase Inhibition and Cold Plasma-derived Oxidants Synergize in Melanoma Cell Death Induction
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2018-8-24) Gandhirajan, Rajesh Kumar; Rödder, Katrin; Bodnar, Yana; Pasqual-Melo, Gabriella; Emmert, Steffen; Griguer, Corinne E.; Weltmann, Klaus-Dieter; Bekeschus, Sander
    Despite striking advances in the treatment of metastasized melanoma, the disease is often still fatal. Attention is therefore paid towards combinational regimens. Oxidants endogenously produced in mitochondria are currently targeted in pre-clinical and clinical studies. Cytotoxic synergism of mitochondrial cytochrome c oxidase (CcO) inhibition in conjunction with addition of exogenous oxidants in 2D and 3D melanoma cell culture models were examined. Murine (B16) and human SK-MEL-28 melanoma cells exposed to low-dose CcO inhibitors (potassium cyanide or sodium azide) or exogenous oxidants alone were non-toxic. However, we identified a potent cytotoxic synergism upon CcO inhibition and plasma-derived oxidants that led to rapid onset of caspase-independent melanoma cell death. This was mediated by mitochondrial dysfunction induced by superoxide elevation and ATP depletion. This observation was validated by siRNA-mediated knockdown of COX4I1 in SK-MEL-28 cells with cytotoxicity in the presence of exogenous oxidants. Similar effects were obtained with ADDA 5, a recently identified specific inhibitor of CcO activity showing low toxicity in vivo. Human keratinocytes were not affected by this combinational treatment, suggesting selective effects on melanoma cells. Hence, targeting mitochondrial CcO activity in conjunction with exogenous pro oxidant therapies may constitute a new and effective melanoma treatment modality.
  • Item
    Manipulation of small particles at solid liquid interface: Light driven diffusioosmosis
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2016) Feldmann, David; Maduar, Salim R.; Santer, Mark; Lomadze, Nino; Vinogradova, Olga I.; Santer, Svetlana
    The strong adhesion of sub-micron sized particles to surfaces is a nuisance, both for removing contaminating colloids from surfaces and for conscious manipulation of particles to create and test novel micro/nano-scale assemblies. The obvious idea of using detergents to ease these processes suffers from a lack of control: the action of any conventional surface-modifying agent is immediate and global. With photosensitive azobenzene containing surfactants we overcome these limitations. Such photo-soaps contain optical switches (azobenzene molecules), which upon illumination with light of appropriate wavelength undergo reversible trans-cis photo-isomerization resulting in a subsequent change of the physico-chemical molecular properties. In this work we show that when a spatial gradient in the composition of trans- and cis- isomers is created near a solid-liquid interface, a substantial hydrodynamic flow can be initiated, the spatial extent of which can be set, e.g., by the shape of a laser spot. We propose the concept of light induced diffusioosmosis driving the flow, which can remove, gather or pattern a particle assembly at a solid-liquid interface. In other words, in addition to providing a soap we implement selectivity: particles are mobilized and moved at the time of illumination, and only across the illuminated area.
  • Item
    Magnetically Controllable Polymer Nanotubes from a Cyclized Crosslinker for Site-Specific Delivery of Doxorubicin
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2015) Newland, Ben; Leupelt, Daniel; Zheng, Yu; Thomas, Laurent S.V.; Werner, Carsten; Steinhart, Martin; Wang, Wenxin
    Externally controlled site specific drug delivery could potentially provide a means of reducing drug related side effects whilst maintaining, or perhaps increasing therapeutic efficiency. The aim of this work was to develop a nanoscale drug carrier, which could be loaded with an anti-cancer drug and be directed by an external magnetic field. Using a single, commercially available monomer and a simple one-pot reaction process, a polymer was synthesized and crosslinked within the pores of an anodized aluminum oxide template. These polymer nanotubes (PNT) could be functionalized with iron oxide nanoparticles for magnetic manipulation, without affecting the large internal pore, or inherent low toxicity. Using an external magnetic field the nanotubes could be regionally concentrated, leaving areas devoid of nanotubes. Lastly, doxorubicin could be loaded to the PNTs, causing increased toxicity towards neuroblastoma cells, rendering a platform technology now ready for adaptation with different nanoparticles, degradable pre-polymers and various therapeutics.
  • Item
    Electromagnon excitation in cupric oxide measured by Fabry-Pérot enhanced terahertz Mueller matrix ellipsometry
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2019) Knight, Sean; Prabhakaran, Dharmalingam; Binek, Christian; Schubert, Mathias
    Here we present the use of Fabry-Pérot enhanced terahertz (THz) Mueller matrix ellipsometry to measure an electromagnon excitation in monoclinic cupric oxide (CuO). As a magnetically induced ferroelectric multiferroic, CuO exhibits coupling between electric and magnetic order. This gives rise to special quasiparticle excitations at THz frequencies called electromagnons. In order to measure the electromagnons in CuO, we exploit single-crystal CuO as a THz Fabry-Pérot cavity to resonantly enhance the excitation’s signature. This enhancement technique enables the complex index of refraction to be extracted. We observe a peak in the absorption coefficient near 0.705 THz and 215 K, which corresponds to the electromagnon excitation. This absorption peak is observed along only one major polarizability axis in the monoclinic a–c plane. We show the excitation can be represented using the Lorentz oscillator model, and discuss how these Lorentz parameters evolve with temperature. Our findings are in excellent agreement with previous characterizations by THz time-domain spectroscopy (THz-TDS), which demonstrates the validity of this enhancement technique.
  • Item
    Bone marrow niche-mimetics modulate HSPC function via integrin signaling
    (London : Nature Publishing Group, 2017) Kräter, Martin; Jacobi, Angela; Otto, Oliver; Tietze, Stefanie; Müller, Katrin; Poitz, David M.; Palm, Sandra; Zinna, Valentina M.; Biehain, Ulrike; Wobus, Manja; Chavakis, Triantafyllos; Werner, Carsten; Guck, Jochen; Bornhauser, Martin
    The bone marrow (BM) microenvironment provides critical physical cues for hematopoietic stem and progenitor cell (HSPC) maintenance and fate decision mediated by cell-matrix interactions. However, the mechanisms underlying matrix communication and signal transduction are less well understood. Contrary, stem cell culture is mainly facilitated in suspension cultures. Here, we used bone marrow-mimetic decellularized extracellular matrix (ECM) scaffolds derived from mesenchymal stromal cells (MSCs) to study HSPC-ECM interaction. Seeding freshly isolated HSPCs adherent (AT) and non-adherent (SN) cells were found. We detected enhanced expansion and active migration of AT-cells mediated by ECM incorporated stromal derived factor one. Probing cell mechanics, AT-cells displayed naïve cell deformation compared to SN-cells indicating physical recognition of ECM material properties by focal adhesion. Integrin αIIb (CD41), αV (CD51) and β3 (CD61) were found to be induced. Signaling focal contacts via ITGβ3 were identified to facilitate cell adhesion, migration and mediate ECM-physical cues to modulate HSPC function.
  • Item
    Soft-mode driven polarity reversal in ferroelectrics mapped by ultrafast x-ray diffraction
    (Melville, NY : AIP Publishing LLC, 2018) Hauf, Christoph; Hernandez Salvador, Antonio-Andres; Holtz, Marcel; Woerner, Michael; Elsaesser, Thomas
    Quantum theory has linked microscopic currents and macroscopic polarizations of ferroelectrics, but the interplay of lattice excitations and charge dynamics on atomic length and time scales is an open problem. Upon phonon excitation in the prototypical ferroelectric ammonium sulfate [(NH4)2SO4], we determine transient charge density maps by femtosecond x-ray diffraction. A newly discovered low frequency-mode with a 3 ps period and sub-picometer amplitudes induces periodic charge relocations over some 100 pm, a hallmark of soft-mode behavior. The transient charge density allows for deriving the macroscopic polarization, showing a periodic reversal of polarity.
  • Item
    The sequence to hydrogenate coronene cations: A journey guided by magic numbers
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2016) Cazaux, Stéphanie; Boschman, Leon; Rougeau, Nathalie; Reitsma, Geert; Hoekstra, Ronnie; Teillet-Billy, Dominique; Morisset, Sabine; Spaans, Marco; Schlathölter, Thomas
    The understanding of hydrogen attachment to carbonaceous surfaces is essential to a wide variety of research fields and technologies such as hydrogen storage for transportation, precise localization of hydrogen in electronic devices and the formation of cosmic H2. For coronene cations as prototypical Polycyclic Aromatic Hydrocarbon (PAH) molecules, the existence of magic numbers upon hydrogenation was uncovered experimentally. Quantum chemistry calculations show that hydrogenation follows a site-specific sequence leading to the appearance of cations having 5, 11, or 17 hydrogen atoms attached, exactly the magic numbers found in the experiments. For these closed-shell cations, further hydrogenation requires appreciable structural changes associated with a high transition barrier. Controlling specific hydrogenation pathways would provide the possibility to tune the location of hydrogen attachment and the stability of the system. The sequence to hydrogenate PAHs, leading to PAHs with magic numbers of H atoms attached, provides clues to understand that carbon in space is mostly aromatic and partially aliphatic in PAHs. PAH hydrogenation is fundamental to assess the contribution of PAHs to the formation of cosmic H2.
  • Item
    Limbal stromal cells derived from porcine tissue demonstrate mesenchymal characteristics in vitro
    (London : Nature Publishing Group, 2017) Fernández-Pérez, Julia; Binner, Marcus; Werner, Carsten; Bray, Laura J.
    Limbal stromal cells (LSCs) from the human ocular surface display mesenchymal stromal cell characteristics in vitro. In this study, we isolated cells from the porcine limbal stroma (pLSCs), characterised them, and evaluated their ability to support angiogenesis and the culture of porcine limbal epithelial stem cells (pLESCs). The isolated cells adhered to plastic and grew in monolayers in vitro using serum-supplemented or serum-free medium. The pLSCs demonstrated expression of CD29, and cross-reactivity with anti-human CD45, CD90, CD105, CD146, and HLA-ABC. However, expression of CD105, CD146 and HLA-ABC reduced when cultured in serum-free medium. PLSCs did not undergo adipogenic or osteogenic differentiation, but differentiated towards the chondrogenic lineage. Isolated cells were also co-cultured with human umbilical vein endothelial cells (HUVECs) in star-shaped Poly(ethylene glycol) (starPEG)-heparin hydrogels to assess their pericyte capacity which supported angiogenesis networks of HUVECs. PLSCs supported the three dimensional HUVEC network for 7 days. The isolated cells were further growth-arrested and evaluated as feeder cells for pLESC expansion on silk fibroin membranes, as a potential carrier material for transplantation. PLSCs supported the growth of pLESCs comparably to murine 3T3 cells. In conclusion, although pLSCs were not completely comparable to their human counterpart, they display several mesenchymal-like characteristics in vitro.
  • Item
    Intercomparison of in-situ aircraft and satellite aerosol measurements in the stratosphere
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2019) Sandvik, Oscar S.; Friberg, Johan; Martinsson, Bengt G.; van Velthoven, Peter F. J.; Hermann, Markus; Zahn, Andreas
    Aerosol composition and optical scattering from particles in the lowermost stratosphere (LMS) have been studied by comparing in-situ aerosol samples from the IAGOS-CARIBIC passenger aircraft with vertical profiles of aerosol backscattering obtained from the CALIOP lidar aboard the CALIPSO satellite. Concentrations of the dominating fractions of the stratospheric aerosol, being sulphur and carbon, have been obtained from post-flight analysis of IAGOS-CARIBIC aerosol samples. This information together with literature data on black carbon concentrations were used to calculate the aerosol backscattering which subsequently is compared with measurements by CALIOP. Vertical optical profiles were taken in an altitude range of several kilometres from and above the northern hemispheric extratropical tropopause for the years 2006-2014. We find that the two vastly different measurement platforms yield different aerosol backscattering, especially close to the tropopause where the influence from tropospheric aerosol is strong. The best agreement is found when the LMS is affected by volcanism, i.e., at elevated aerosol loadings. At background conditions, best agreement is obtained some distance (>2 km) above the tropopause in winter and spring, i.e., at likewise elevated aerosol loadings from subsiding aerosol-rich stratospheric air. This is to our knowledge the first time the CALIPSO lidar measurements have been compared to in-situ long-term aerosol measurements. © 2019, The Author(s).