Search Results

Now showing 1 - 10 of 47
  • Item
    Independent Geometrical Control of Spin and Charge Resistances in Curved Spintronics
    (Washington, DC : ACS Publ., 2019) Das, Kumar Sourav; Makarov, Denys; Gentile, Paola; Cuoco, Mario; Van Wees, Bart J.; Ortix, Carmine; Vera-Marun, Ivan J.
    Spintronic devices operating with pure spin currents represent a new paradigm in nanoelectronics, with a higher energy efficiency and lower dissipation as compared to charge currents. This technology, however, will be viable only if the amount of spin current diffusing in a nanochannel can be tuned on demand while guaranteeing electrical compatibility with other device elements, to which it should be integrated in high-density three-dimensional architectures. Here, we address these two crucial milestones and demonstrate that pure spin currents can effectively propagate in metallic nanochannels with a three-dimensional curved geometry. Remarkably, the geometric design of the nanochannels can be used to reach an independent tuning of spin transport and charge transport characteristics. These results laid the foundation for the design of efficient pure spin current-based electronics, which can be integrated in complex three-dimensional architectures. © 2019 American Chemical Society.
  • Item
    Devulcanization of Waste Rubber and Generation of Active Sites for Silica Reinforcement
    (Washington, DC : ACS Publications, 2019) Ghorai, Soumyajit; Mondal, Dipankar; Hait, Sakrit; Ghosh, Anik Kumar; Wiessner, Sven; Das, Amit; De, Debapriya
    Each year, hundreds of millions of tires are produced and ultimately disposed into nature. To address this serious environmental issue, devulcanization could be one of the sustainable solutions that still remains as one of the biggest challenges across the globe. In this work, sulfur-vulcanized natural rubber (NR) is mechanochemically devulcanized utilizing a silane-based tetrasulfide as a devulcanizing agent, and subsequently, silica (SiO2)-based rubber composites are prepared. This method not only breaks the sulfur–sulfur cross-links but also produces reactive poly(isoprene) chains to interact with silica. The silica natural rubber composites are prepared by replacing 30% fresh NR by devulcanized NR with varying contents of silica. The composites exhibit excellent mechanical properties, tear strength, abrasion resistance, and dynamic mechanical properties as compared with the fresh natural rubber silica composites. The tensile strength of devulcanized rubber-based silica composites is ∼20 MPa, and the maximum elongation strain is ∼921%. The devulcanized composites are studied in detail by chemical, mechanical, and morphological analyses. Thus, the value added by the devulcanized rubber could attract the attention of recycling community for its sustainable applications.
  • Item
    Halloysite Nanotubes Noncovalently Functionalised with SDS Anionic Surfactant and PS-b-P4VP Block Copolymer for Their Effective Dispersion in Polystyrene as UV-Blocking Nanocomposite Films
    (New York, NY : Hindawi Publ., 2017) Tzounis, Lazaros; Herlekar, Shreya; Tzounis, Antonios; Charisiou, Nikolaos D.; Goula, Maria; Stamm, Manfred
    Asimple and versatilemethod is reported for the noncovalent functionalisation of natural and "green" halloysite nanotubes (HNTs) allowing their effective dispersion in a polystyrene (PS) thermoplastic matrix via solvent mixing. Initially, HNTs (pristine HNTs) were modified with physically adsorbed surfactant molecules of sodium dodecyl sulphate (SDS) and PS-b-P4VP [P4VP: poly(4-vinylpyridine)] block copolymer (BCP). Hereafter, SDS and BCP modified HNTs will be indicated as SDS-m-HNT and BCP-m-HNT.Nanocomposite films with 1, 2, and 5 wt.%HNTloadingswere prepared, abbreviated as PS-SDS-m-HNT1, PS-SDS-m-HNT2, and PS-SDS-m-HNT5 and PS-BCP-m-HNT1, PS-BCP-m-HNT2, and PS-BCP-m-HNT5 (where 1, 2, and 5 correspond to the wt.% of HNTs). All nanocomposites depicted improved thermal degradation compared to the neat PS as revealed by thermogravimetric analysis (TGA). Transmission electron microscopy (TEM) confirmed the good dispersion state of HNTs and the importance of modification by SDS and BCP. X-ray diffraction (XRD) studies showed the characteristic interlayer spacing between the two silicate layers of pristine and modified HNTs. The PS/HNT nanocomposite films exhibited excellent ultraviolent-visible (UV-vis) absorbance properties and their potential application as UV-filters could be envisaged.
  • Item
    The influence of partial replacement of Cu with Ga on the corrosion behavior of Ti40Zr10Cu36PD14 metallic glasses
    (Bristol : IOP Publishing, 2019) Wei, Qi; Gostin, Petre Flaviu; Addison, Owen; Reed, Daniel; Calin, Mariana; Bera, Supriya; Ramasamy, Parthiban; Davenport, Alison
    TiZrCuPdGa metallic glasses are under consideration for small dental biomedical implants. There is interest in replacing some of the Cu with Ga to improve the glass-forming ability and biocompatibility. Ti40Zr10Cu36-xPd14Gax (x = 0, 1, 2, 4, 8 and 10 at.%) metallic glasses in rod and ribbon forms were fabricated by mould casting and melt spinning, respectively, and electrochemically tested in a 0.9wt.% NaCl (0.154 M) solution. It has been shown that for both rod and ribbon samples Ga levels up to 8% have no significant effect on passive current density, pitting potential or cathodic reactivity in 0.9% NaCl at 37°C. Different pitting potential and corrosion potential values were found when ribbon and rod samples of the same composition were compared for all compositions apart from the one containing the highest Ga level (10%). This was attributed to structural relaxation occurring as a result of the slower cooling rates during casting rods compared with melt-spinning ribbons. Substitution of Ga for Cu in these metallic glasses therefore expected to have no significant effect on corrosion susceptibility. © The Author(s) 2019.
  • Item
    On the Impact of Strained PECVD Oxide Layers on Oxide Precipitation in Silicon
    (Pennington, NJ : ECS, 2019) Kissinger, G.; Kot, D.; Lisker, M.; Sattler, A.
    PECVD oxide layers with different layer stress ranging from about −305.2 MPa to 39.9 MPa were deposited on silicon wafers with similar concentration of interstitial oxygen. After a thermal treatment consisting of rapid thermal annealing (RTA) and furnace annealing 780°C 3 h + 1000°C 16 h in nitrogen the profiles of the oxide precipitate density were investigated. Supersaturations of self-interstitials as function of layer stress were determined by adjusting modelling results to measured depth profiles of bulk microdefects. The self-interstitial supersaturation generated by RTA at 1250°C and 1175°C at the silicon/oxide interface is increasing linearly with increasing layer stress. Values for self-interstitial supersaturation determined on deposited oxide layers after RTA at 1250°C and 1175°C are very similar to values published for RTO by Sudo et al. An RTA at 1175°C with a PECVD oxide on top of the wafer is a method to effectively suppress oxygen precipitation in silicon wafers. Nucleation anneals carried out at 650°C for 4 h and 8 h did not show any effect of PECVD oxide layers on oxide precipitate nucleation. © The Author(s) 2019.
  • Item
    In Situ Monitoring of Linear RGD-Peptide Bioconjugation with Nanoscale Polymer Brushes
    (Washington, DC : ACS Publications, 2017) Psarra, Evmorfia; König, Ulla; Müller, Martin; Bittrich, Eva; Eichhorn, Klaus-Jochen; Welzel, Petra B.; Stamm, Manfred; Uhlmann, Petra
    Bioinspired materials mimicking the native extracellular matrix environment are promising for biotechnological applications. Particularly, modular biosurface engineering based on the functionalization of stimuli-responsive polymer brushes with peptide sequences can be used for the development of smart surfaces with biomimetic cues. The key aspect of this study is the in situ monitoring and analytical verification of the biofunctionalization process on the basis of three complementary analytical techniques. In situ spectroscopic ellipsometry was used to quantify the amount of chemisorbed GRGDS at both the homopolymer poly(acrylic acid) (PAA) brush and the binary poly(N-isopropylacrylamide) (PNIPAAm)-PAA brushes, which was finally confirmed by an acidic hydrolysis combined with a subsequent reverse-phase high-performance liquid chromatography analysis. In situ attenuated total reflection-Fourier transform infrared spectroscopy provided a step-by-step detection of the biofunctionalization process so that an optimized protocol for the bioconjugation of GRGDS could be identified. The optimized protocol was used to create a temperature-responsive binary brush with a high amount of chemisorbed GRGDS, which is a promising candidate for the temperature-sensitive control of GRGDS presentation in further cell-instructive studies.
  • Item
    Nanomagnetism of Magnetoelectric Granular Thin-Film Antiferromagnets
    (Washington, DC : ACS Publ., 2019) Appel, Patrick; Shields, Brendan J.; Kosub, Tobias; Hedrich, Natascha; Hübner, René; Faßbender, Jürgen; Makarov, Denys; Maletinsky, Patrick
    Antiferromagnets have recently emerged as attractive platforms for spintronics applications, offering fundamentally new functionalities compared with their ferromagnetic counterparts. Whereas nanoscale thin-film materials are key to the development of future antiferromagnetic spintronic technologies, existing experimental tools tend to suffer from low resolution or expensive and complex equipment requirements. We offer a simple, high-resolution alternative by addressing the ubiquitous surface magnetization of magnetoelectric antiferromagnets in a granular thin-film sample on the nanoscale using single-spin magnetometry in combination with spin-sensitive transport experiments. Specifically, we quantitatively image the evolution of individual nanoscale antiferromagnetic domains in 200 nm thin films of Cr 2 O 3 in real space and across the paramagnet-to-antiferromagnet phase transition, finding an average domain size of 230 nm, several times larger than the average grain size in the film. These experiments allow us to discern key properties of the Cr 2 O 3 thin film, including the boundary magnetic moment density, the variation of critical temperature throughout the film, the mechanism of domain formation, and the strength of exchange coupling between individual grains comprising the film. Our work offers novel insights into the magnetic ordering mechanism of Cr 2 O 3 and firmly establishes single-spin magnetometry as a versatile and widely applicable tool for addressing antiferromagnetic thin films on the nanoscale. © 2019 American Chemical Society.
  • Item
    Advanced Optical Programming of Individual Meta-Atoms Beyond the Effective Medium Approach
    (Weinheim : Wiley-VCH, 2019) Michel, Ann-Katrin U.; Heßler, Andreas; Meyer, Sebastian; Pries, Julian; Yu, Yuan; Kalix, Thomas; Lewin, Martin; Hanss, Julian; De Rose, Angela; Maß, Tobias W.W.; Wuttig, Matthias; Chigrin, Dmitry N.; Taubner, Thomas
    Nanometer-thick active metasurfaces (MSs) based on phase-change materials (PCMs) enable compact photonic components, offering adjustable functionalities for the manipulation of light, such as polarization filtering, lensing, and beam steering. Commonly, they feature multiple operation states by switching the whole PCM fully between two states of drastically different optical properties. Intermediate states of the PCM are also exploited to obtain gradual resonance shifts, which are usually uniform over the whole MS and described by effective medium response. For programmable MSs, however, the ability to selectively address and switch the PCM in individual meta-atoms is required. Here, simultaneous control of size, position, and crystallization depth of the switched phase-change material (PCM) volume within each meta-atom in a proof-of-principle MS consisting of a PCM-covered Al–nanorod antenna array is demonstrated. By modifying optical properties locally, amplitude and light phase can be programmed at the meta-atom scale. As this goes beyond previous effective medium concepts, it will enable small adaptive corrections to external aberrations and fabrication errors or multiple complex functionalities programmable on the same MS. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Soft Microrobots Employing Nonequilibrium Actuation via Plasmonic Heating
    (Weinheim : Wiley-VCH, 2017) Mourran, Ahmed; Zhang, Hang; Vinokur, Rostislav; Möller, Martin
    A soft microrobot composed of a microgel and driven by the light-controlled nonequilibrium dynamics of volume changes is presented. The photothermal response of the microgel, containing plasmonic gold nanorods, enables fast heating/cooling dynamics. Mastering the nonequilibrium response provides control of the complex motion, which goes beyond what has been so far reported for hydrophilic microgels.
  • Item
    Reversible thermosensitive biodegradable polymeric actuators based on confined crystallization
    (Washington, DC : ACS Publ., 2015) Stroganov, Vladislav; Al-Hussein, Mahmoud; Sommer, Jens-Uwe; Janke, Andreas; Zakharchenko, Svetlana; Ionov, Leonid
    We discovered a new and unexpected effect of reversible actuation of ultrathin semicrystalline polymer films. The principle was demonstrated on the example of thin polycaprolactone-gelatin bilayer films. These films are unfolded at room temperature, fold at temperature above polycaprolactone melting point, and unfold again at room temperature. The actuation is based on reversible switching of the structure of the hydrophobic polymer (polycaprolactone) upon melting and crystallization. We hypothesize that the origin of this unexpected behavior is the orientation of polycaprolactone chains parallel to the surface of the film, which is retained even after melting and crystallization of the polymer or the “crystallization memory effect”. In this way, the crystallization generates a directed force, which causes bending of the film. We used this effect for the design of new generation of fully biodegradable thermoresponsive polymeric actuators, which are highly desirable for bionano-technological applications such as reversible encapsulation of cells and design of swimmers.