Search Results

Now showing 1 - 10 of 37
  • Item
    Interconnected electrocatalytic Pt-metal networks by plasma treatment of nanoparticle-peptide fibril assemblies
    (London : RSC Publishing, 2019) Bandak, J.; Petzold, J.; Hatahet, H.; Prager, A.; Kersting, B.; Elsner, Ch.; Abel, B.
    Noble metal catalysts possess outstanding catalytic behaviors in organic reactions, photocatalysis, electrocatalysis and many other applications. Peptide fibrils are used for the controllable nanostructuring of metal nanoparticles with specific sizes, shapes and high-surface area structures. The degradation of these fibrils with O2-plasma yields interconnected networks of nanoparticles, similar to metallic nanowires. Herein, platinum nanoparticles (Pt-NPs) were synthesized by reduction using VUV excimer radiation. The particle size was characterized by dynamic light scattering (DLS). Due to agglomeration, the metal nanoparticles were stabilized using poly(vinyl pyrrolidone) (PVP) and the same synthesis procedure. The influence of the polymer PVP molecular weight (Mwt), PVP concentration (Cp) and VUV irradiation time on platinum nanoparticle size was investigated. Small (2–3 nm) Pt-NPs are formed in the case of PVP with Mwt = 10 000 g mol−1. With increasing PVP Mwt, decreasing PVP concentration and shorter irradiation times, larger sized nanoparticles appear. The applicability of templated platinum nanoparticles, both the PVP-stabilized and non-stabilized Pt-NPs, immobilized via electrostatic interactions on the solid phase-synthesized aniline-GGAAKLVFF (AFP) peptide fibrils was investigated to serve as possible electrode material. The plasma treatment of the nanoparticle-fibril-assemblies was also studied as a novel technique. The Pt-NPs-AFP fibrils and the PVP-stabilized-Pt-NPs-AFP fibrils nanohybrids were employed to modify electrodes and then subjected to O2-plasma treatment. These O2-plasma treated/modified electrodes exhibited high electrocatalytic activities towards oxygen reduction in cyclic voltammetry measurements. Thus, the aforementioned nanocomposites hold great potential for polymer electrolyte fuel cells and other electrochemical applications in miniature devices and microfluidic chips.
  • Item
    Determination of side products in the photocatalytic generation of hydrogen with copper photosensitizers by resonance Raman spectroelectrochemistry
    (London : RSC Publishing, 2016) Zhang, Ying; Heberle, Martin; Wächtler, Maria; Karnahl, Michael; Dietzek, Benjamin
    A combination of UV-Vis and resonance Raman spectroscopy in conjunction with electrochemistry is employed to reveal the nature of a side product formed when using heteroleptic Cu(I)-photosensitizers [(P^P)Cu(N^N)]+ for photocatalytic hydrogen generation. It is shown that homoleptic [Cu(N^N)2]+ complexes are formed under oxidative conditions confirming a proposed deactivation pathway.
  • Item
    Stability studies of ionic liquid [EMIm][NTf2] under short-term thermal exposure
    (London : RSC Publishing, 2016) Neise, Christin; Rautenberg, Christine; Bentrup, Ursula; Beck, Martin; Ahrenberg, Mathias; Schick, Christoph; Keßler, Olaf; Kragl, Udo
    Ionic liquids (ILs) as new media for synthesis and as functional fluids in technical applications are still of high interest. Cooling a steel component from an annealing temperature of nearly 850 °C down to room temperature in a liquid bath is a technically important process. The use of ionic liquids offers advantages avoiding film boiling of the quenching medium. However, such a high immersion temperature exceeds the thermal stability of the IL, for example such as [EMIm][NTf2]. To obtain information about formation of potential toxic decomposition products, potential fragments at varied states of decomposition of [EMIm][NTf2] were studied by various spectroscopic and gravimetric methods. For the first time it was possible to quantify fluorine-containing products via mass spectrometry coupled directly with thermogravimetric (TG) measurements. While chemical and spectroscopic analysis of thermally stressed ILs revealed no hints concerning changes of composition after quenching hot steel for several times, the mass-spectrometer (MS) coupled TG analysis gives information by comparing the decomposition behaviour of fresh and used ILs. A number of fragments were detected in low amounts confirming the proposed decomposition mechanism.
  • Item
    High performance stability of titania decorated carbon for desalination with capacitive deionization in oxygenated water
    (London : RSC Publishing, 2016) Srimuk, Pattarachai; Ries, Lucie; Zeiger, Marco; Fleischmann, Simon; Jäckel, Nicolas; Tolosa, Aura; Krüner, Benjamin; Aslan, Mesut; Presser, Volker
    Performance stability in capacitive deionization (CDI) is particularly challenging in systems with a high amount of dissolved oxygen due to rapid oxidation of the carbon anode and peroxide formation. For example, carbon electrodes show a fast performance decay, leading to just 15% of the initial performance after 50 CDI cycles in oxygenated saline solution (5 mM NaCl). We present a novel strategy to overcome this severe limitation by employing nanocarbon particles hybridized with sol–gel-derived titania. In our proof-of-concept study, we demonstrate very stable performance in low molar saline electrolyte (5 mM NaCl) with saturated oxygen for the carbon/metal oxide hybrid (90% of the initial salt adsorption capacity after 100 cycles). The electrochemical analysis using a rotating disk electrode (RDE) confirms the oxygen reduction reaction (ORR) catalytic effect of FW200/TiO2, preventing local peroxide formation by locally modifying the oxygen reduction reaction.
  • Item
    Theoretical mechanistic investigation of zinc(ii) catalyzed oxidation of alcohols to aldehydes and esters
    (London : RSC Publishing, 2016) Nisa, Riffat Un; Mahmood, Tariq; Ludwig, Ralf; Ayub, Khurshid
    The mechanism of the Zn(II) catalyzed oxidation of benzylic alcohol to benzaldehyde and ester by H2O2 oxidant was investigated through density functional theory methods and compared with the similar oxidation mechanisms of other late transition metals. Both inner sphere and intermediate sphere mechanisms have been analyzed in the presence and absence of pyridine-2-carboxylic acid (ligand). An intermediate sphere mechanism involving the transfer of hydrogen from alcohol to H2O2 was found to be preferred over the competitive inner sphere mechanism involving β-hydride elimination. Kinetic barriers associated with the intermediate sphere mechanism are consistent with the experimental observations, suggesting that the intermediate sphere mechanism is a plausible mechanism under these reaction conditions. The oxidation of alcohols to aldehydes (first step) is kinetically more demanding than the oxidation of hemiacetals to esters (second step). Changing the oxidant to tert-butyl hydrogen peroxide (TBHP) increases the activation barrier for the oxidation of alcohol to aldehyde by 0.4 kcal mol−1, but decreases the activation barrier by 3.24 kcal mol−1 for oxidation of hemiacetal to ester. Replacement of zinc bromide with zinc iodide causes the second step to be more demanding than the first step. Pyridine-2-carboxylic acid ligand remarkably decreases the activation barriers for the intermediate sphere pathway, whereas a less pronounced inverse effect is estimated for the inner sphere mechanism.
  • Item
    Gas hydrates model for the mechanistic investigation of the Wittig reaction “on water”
    (London : RSC Publishing, 2016) Ayub, Khurshid; Ludwig, Ralf
    Theoretical mechanistic details for “on water” Wittig reaction of a stabilized ylide with benzaldehyde are presented and compared with a similar reaction under neat conditions. A gas hydrate structure consisting of 20 water molecules has been applied as a water surface for the reaction. The model is chosen to capture non-bonding interactions over a larger area in order to better account for the “on water” effect. The calculated acceleration for the cis-selective Wittig reaction is more than that for the trans-selective Wittig reaction. The “on water” acceleration for the Wittig reaction is due to greater number of non-bonding interactions in the transition state, compared to the starting material. The greater acceleration for the cis-selective Wittig over the trans-selective Wittig has been rationalized on the basis of non-bonding interactions in addition to hydrogen bonding. Besides accelerating the reaction, water also affects the pathway for the reaction. Decomposition of cisOP2 to alkene is estimated as a barrierless process. Moreover OP2 is more stable than OP1 for both cis and trans-selective Wittig reactions, opposite to what is observed for the neat reaction.
  • Item
    Sulfonated covalent triazine-based frameworks as catalysts for the hydrolysis of cellobiose to glucose
    (London : RSC Publishing, 2018) Artz, Jens; Delidovich, Irina; Pilaski, Moritz; Niemeier, Johannes; Kübber, Britta Maria; Rahimi, Khosrow; Palkovits, Regina
    Covalent triazine-based frameworks (CTFs) were synthesized in large scale from various monomers. The materials were post-synthetically modified with acid functionalities via gas-phase sulfonation. Acid capacities of up to 0.83 mmol g−1 at sulfonation degrees of up to 10.7 mol% were achieved. Sulfonated CTFs exhibit high specific surface area and porosity as well as excellent thermal stability under aerobic conditions (>300 °C). Successful functionalization was verified investigating catalytic activity in the acid-catalyzed hydrolysis of cellobiose to glucose at 150 °C in H2O. Catalytic activity is mostly affected by porosity, indicating that mesoporosity is beneficial for hydrolysis of cellobiose. Like other sulfonated materials, S-CTFs show low stability under hydrothermal reaction conditions. Recycling of the catalyst is challenging and significant amounts of sulfur leached out of the materials. Nevertheless, gas-phase sulfonation opens a path to tailored solid acids for application in various reactions. S-CTFs form the basis for multi-functional catalysts, containing basic coordination sites for metal catalysts, tunable structural parameters and surface acidity within one sole system.
  • Item
    Stabilizing silica nanoparticles in hydrogels: impact on storage and polydispersity
    (London : RSC Publishing, 2017) Giovannini, Giorgia; Kunc, Filip; Piras, Carmen C.; Stranik, Ondrej; Edwards, Alison A.; Hall, Andrew J.; Gubala, Vladimir
    For successful nanomedicine, it is important that the unique, size-dependent physico-chemical properties of the nanomaterial remain predictably constant during both the storage and the manipulation of the material. Here a novel approach to preserve the colloidal stability and degradation of NPs is described. The concept is simple: (a) a solution of monodisperse particles is formulated into a responsive water- or PBS-based hydrogel; (b) the gel can be reversibly turned into a solution after long term storage by shaking it by hand; (c) the NP can be diluted and used in any desired application without the need for excessive manipulation. The differences between the physico-chemical properties of NPs stored in solution and in gel are compared. Two types of NPs were involved in this study: silica NPs of ∼100 nm and Au-NPs of 30 and 80 nm in diameter. The key findings are: the fibrous matrix of the hydrogel limits the NP mobility, significantly reduces NP aggregation and conserves the NP morphology; both the hydrogelator and the NPs show negligible toxicity towards the model U937 human hematopoietic cell line; undesired leaching of cargo material loaded inside the particles is reduced, which could be an important feature for drug delivery systems.
  • Item
    Copolymerization of CO2 and epoxides mediated by zinc organyls
    (London : RSC Publishing, 2018) Wulf, Christoph; Doering, Ulrike; Werner, Thomas
    Herein we report the copolymerization of CHO with CO2 in the presence of various zinc compounds R2Zn (R = Et, Bu, iPr, Cy and Ph). Several zinc organyls proved to be efficient catalysts for this reaction in the absence of water and co-catalyst. Notably, readily available Bu2Zn reached a TON up to 269 and an initial TOF up to 91 h-1. The effect of various parameters on the reaction outcome has been investigated. Poly(ether)carbonates with molecular weights up to 79.3 kg mol-1 and a CO2 content of up to 97% were obtained. Under standard reaction conditions (100 °C, 2.0 MPa, 16 h) the influence of commonly employed co-catalysts such as PPNCl and TBAB has been investigated in the presence of Et2Zn (0.5 mol%). The reaction of other epoxides (e.g. propylene and styrene oxide) under these conditions led to no significant conversion or to the formation of the respective cyclic carbonate as the main product.
  • Item
    Different transition metal combinations of LDH systems and their organic modifications as UV protecting materials for polypropylene (PP)
    (London : RSC Publishing, 2018) Naseem, Sajid; Lonkar, Sunil P.; Leuteritz, Andreas; Labuschagné, Frederick J. W. J.
    In this research, the use of layered double hydroxides (LDHs) as ultraviolet (UV) light-protecting additives for PP is explored. Different LDHs, such as ZnTi, ZnSn, ZnGa, ZnCr and CdCr LDHs, were prepared and their UV absorptions were characterized. The ZnTi LDHs showed higher UV absorption than the other four metallic combinations and were further organically modified with dodecylbenzene sodium sulfonate (SDBS) and lauric acid (LA). Nanocomposites of polypropylene (PP) with four different types of LDHs, ZnTi, ZnSn, ZnTi-SDBS and ZnTi-LA, were prepared at concentrations of 5%. The crystallinities and layered structures of all the metallic combinations of LDHs were characterized by wide angle X-ray spectroscopy (WAXS) and ultraviolet visible (UV-vis) absorption spectroscopy, and their crystal morphologies were studied by scanning electron microscopy (SEM). The decomposition and thermal properties of the nanocomposites and pure PP were analyzed by thermogravimetric analysis (TGA) and transmission electron microscopy (TEM) and by their photo-oxidation behavior. The addition of these organically modified and unmodified LDHs showed significant changes in the thermal decomposition of PP. The thermal stability of PP was increased to around 70 °C by the addition of SDBS-modified ZnTi LDHs (5% by weight), and an increase in induction time of about 300% was determined.