Search Results

Now showing 1 - 9 of 9
  • Item
    Growth of LiCoO2 Single Crystals by the TSFZ Method
    (Washington, DC : ACS Publ., 2018) Nakamura, Shigenobu; Maljuk, Andrey; Maruyama, Yuki; Nagao, Masanori; Watauchi, Satoshi; Hayashi, Takeshi; Anzai, Yutaka; Furukawa, Yasunori; Ling, Chris D.; Deng, Guochu; Avdeev, Maxim; Büchner, Bernd; Tanaka, Isao
    We have grown LiCoO2 single crystals by the traveling solvent floating zone (TSFZ) growth with Li-rich solvent, having observed the incongruent melting behavior of LiCoO2 between 1100 and 1300 °C. The optimum growth conditions in terms of atmosphere and solvent composition were determined to be Ar flow and an atomic ratio Li/Co 85:15, respectively. The crystals grown using a conventional-mirror-type furnace contained periodic inclusions of a Co-O phase due to the influence of Co-O phase segregation on the stability of the molten zone during growth. By using a tilted-mirror FZ furnace, inclusion-free LiCoO2 crystals of about 5 mm in diameter and 70 mm long were obtained at a tilting angle Î = 10°. The grown crystals were confirmed to be single-domain by neutron Laue diffraction. © 2018 American Chemical Society.
  • Item
    Perfluoroalkylfullerenes
    (Washington, DC : ACS Publ., 2015) Boltalina, Olga V.; Popov, Alexey A.; Kuvychko, Igor V.; Shustova, Natalia B.; Strauss, Steven H.
    New chemical derivatives that possess the greatest variety of addition patterns than any other class of fullerene derivatives represent an important addition to the existing classes of perfluorocarbons, that is, compounds that are composed only of the two types of atoms, carbon and fluorine. These include aromatic and aliphatic perfluorocarbons such as perfluorodecalin, perfluorononane, hexafluorobenzene, etc., which are important as fluorous solvents used in medicine. The propensity of perfluoroalkylfullerenes (PFAFs) to readily crystallize from organic solutions upon slow evaporation in open air provided a straightforward access to their molecular structures via X-ray crystallography. Another crucial aspect that ensures future success in the characterization of numerous PFAFs of higher fullerenes and endohedral metallofullerenes is the possibility to apply HPLC methodologies to the separation of product mixtures. PFAFs, especially those of C60 and C70, are unique fullerene derivatives in terms of the number of structurally characterized derivatives with different number of RF groups and different addition patterns.
  • Item
    Independent Geometrical Control of Spin and Charge Resistances in Curved Spintronics
    (Washington, DC : ACS Publ., 2019) Das, Kumar Sourav; Makarov, Denys; Gentile, Paola; Cuoco, Mario; Van Wees, Bart J.; Ortix, Carmine; Vera-Marun, Ivan J.
    Spintronic devices operating with pure spin currents represent a new paradigm in nanoelectronics, with a higher energy efficiency and lower dissipation as compared to charge currents. This technology, however, will be viable only if the amount of spin current diffusing in a nanochannel can be tuned on demand while guaranteeing electrical compatibility with other device elements, to which it should be integrated in high-density three-dimensional architectures. Here, we address these two crucial milestones and demonstrate that pure spin currents can effectively propagate in metallic nanochannels with a three-dimensional curved geometry. Remarkably, the geometric design of the nanochannels can be used to reach an independent tuning of spin transport and charge transport characteristics. These results laid the foundation for the design of efficient pure spin current-based electronics, which can be integrated in complex three-dimensional architectures. © 2019 American Chemical Society.
  • Item
    Direct Observation of Plasmon Band Formation and Delocalization in Quasi-Infinite Nanoparticle Chains
    (Washington, DC : ACS Publ., 2019) Mayer, Martin; Potapov, Pavel L.; Pohl, Darius; Steiner, Anja Maria; Schultz, Johannes; Rellinghaus, Bernd; Lubk, Axel; König, Tobias A.F.; Fery, Andreas
    Chains of metallic nanoparticles sustain strongly confined surface plasmons with relatively low dielectric losses. To exploit these properties in applications, such as waveguides, the fabrication of long chains of low disorder and a thorough understanding of the plasmon-mode properties, such as dispersion relations, are indispensable. Here, we use a wrinkled template for directed self-assembly to assemble chains of gold nanoparticles. With this up-scalable method, chain lengths from two particles (140 nm) to 20 particles (1500 nm) and beyond can be fabricated. Electron energy-loss spectroscopy supported by boundary element simulations, finite-difference time-domain, and a simplified dipole coupling model reveal the evolution of a band of plasmonic waveguide modes from degenerated single-particle modes in detail. In striking difference from plasmonic rod-like structures, the plasmon band is confined in excitation energy, which allows light manipulations below the diffraction limit. The non-degenerated surface plasmon modes show suppressed radiative losses for efficient energy propagation over a distance of 1500 nm. © 2019 American Chemical Society.
  • Item
    Three-Dimensional Composition and Electric Potential Mapping of III–V Core–Multishell Nanowires by Correlative STEM and Holographic Tomography
    (Washington, DC : ACS Publ., 2018-7-13) Wolf, Daniel; Hübner, René; Niermann, Tore; Sturm, Sebastian; Prete, Paola; Lovergine, Nico; Büchner, Bernd; Lubk, Axel
    The nondestructive characterization of nanoscale devices, such as those based on semiconductor nanowires, in terms of functional potentials is crucial for correlating device properties with their morphological/materials features, as well as for precisely tuning and optimizing their growth process. Electron holographic tomography (EHT) has been used in the past to reconstruct the total potential distribution in three-dimension but hitherto lacked a quantitative approach to separate potential variations due to chemical composition changes (mean inner potential, MIP) and space charges. In this Letter, we combine and correlate EHT and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) tomography on an individual ⟨111⟩ oriented GaAs–AlGaAs core–multishell nanowire (NW). We obtain excellent agreement between both methods in terms of the determined Al concentration within the AlGaAs shell, as well as thickness variations of the few nanometer thin GaAs shell acting as quantum well tube. Subtracting the MIP determined from the STEM tomogram, enables us to observe functional potentials at the NW surfaces and at the Au–NW interface, both ascribed to surface/interface pinning of the semiconductor Fermi level.
  • Item
    Three-Dimensional Superconducting Nanohelices Grown by He+-Focused-Ion-Beam Direct Writing
    (Washington, DC : ACS Publ., 2019) Córdoba, Rosa; Mailly, Dominique; Rezaev, Roman O.; Smirnova, Ekaterina I.; Schmidt, Oliver G.; Fomin, Vladimir M.; Zeitler, Uli; Guillamón, Isabel; Suderow, Hermann; De Teresa, José María
    Novel schemes based on the design of complex three-dimensional (3D) nanoscale architectures are required for the development of the next generation of advanced electronic components. He+ focused-ion-beam (FIB) microscopy in combination with a precursor gas allows one to fabricate 3D nanostructures with an extreme resolution and a considerably higher aspect ratio than FIB-based methods, such as Ga+ FIB-induced deposition, or other additive manufacturing technologies. In this work, we report the fabrication of 3D tungsten carbide nanohelices with on-demand geometries via controlling key deposition parameters. Our results show the smallest and highest-densely packed nanohelix ever fabricated so far, with dimensions of 100 nm in diameter and aspect ratio up to 65. These nanohelices become superconducting at 7 K and show a large critical magnetic field and critical current density. In addition, given its helical 3D geometry, fingerprints of vortex and phase-slip patterns are experimentally identified and supported by numerical simulations based on the time-dependent Ginzburg-Landau equation. These results can be understood by the helical geometry that induces specific superconducting properties and paves the way for future electronic components, such as sensors, energy storage elements, and nanoantennas, based on 3D compact nanosuperconductors. © 2019 American Chemical Society.
  • Item
    Theoretical Prediction of a Giant Anisotropic Magnetoresistance in Carbon Nanoscrolls
    (Washington, DC : ACS Publ., 2017-4-12) Chang, Ching-Hao; Ortix, Carmine
    Snake orbits are trajectories of charge carriers curving back and forth that form at an interface where either the magnetic field direction or the charge carrier type are inverted. In ballistic samples, their presence is manifested in the appearance of magnetoconductance oscillations at small magnetic fields. Here we show that signatures of snake orbits can also be found in the opposite diffusive transport regime. We illustrate this by studying the classical magnetotransport properties of carbon tubular structures subject to relatively weak transversal magnetic fields where snake trajectories appear in close proximity to the zero radial field projections. In carbon nanoscrolls, the formation of snake orbits leads to a strongly directional dependent positive magnetoresistance with an anisotropy up to 80%.
  • Item
    Phonon-Assisted Two-Photon Interference from Remote Quantum Emitters
    (Washington, DC : ACS Publ., 2017-6-7) Reindl, Marcus; Jöns, Klaus D.; Huber, Daniel; Schimpf, Christian; Huo, Yongheng; Zwiller, Val; Rastelli, Armando; Trotta, Rinaldo
    Photonic quantum technologies are on the verge of finding applications in everyday life with quantum cryptography and quantum simulators on the horizon. Extensive research has been carried out to identify suitable quantum emitters and single epitaxial quantum dots have emerged as near-optimal sources of bright, on-demand, highly indistinguishable single photons and entangled photon-pairs. In order to build up quantum networks, it is essential to interface remote quantum emitters. However, this is still an outstanding challenge, as the quantum states of dissimilar “artificial atoms” have to be prepared on-demand with high fidelity and the generated photons have to be made indistinguishable in all possible degrees of freedom. Here, we overcome this major obstacle and show an unprecedented two-photon interference (visibility of 51 ± 5%) from remote strain-tunable GaAs quantum dots emitting on-demand photon-pairs. We achieve this result by exploiting for the first time the full potential of a novel phonon-assisted two-photon excitation scheme, which allows for the generation of highly indistinguishable (visibility of 71 ± 9%) entangled photon-pairs (fidelity of 90 ± 2%), enables push-button biexciton state preparation (fidelity of 80 ± 2%) and outperforms conventional resonant two-photon excitation schemes in terms of robustness against environmental decoherence. Our results mark an important milestone for the practical realization of quantum repeaters and complex multiphoton entanglement experiments involving dissimilar artificial atoms.
  • Item
    Nanomagnetism of Magnetoelectric Granular Thin-Film Antiferromagnets
    (Washington, DC : ACS Publ., 2019) Appel, Patrick; Shields, Brendan J.; Kosub, Tobias; Hedrich, Natascha; Hübner, René; Faßbender, Jürgen; Makarov, Denys; Maletinsky, Patrick
    Antiferromagnets have recently emerged as attractive platforms for spintronics applications, offering fundamentally new functionalities compared with their ferromagnetic counterparts. Whereas nanoscale thin-film materials are key to the development of future antiferromagnetic spintronic technologies, existing experimental tools tend to suffer from low resolution or expensive and complex equipment requirements. We offer a simple, high-resolution alternative by addressing the ubiquitous surface magnetization of magnetoelectric antiferromagnets in a granular thin-film sample on the nanoscale using single-spin magnetometry in combination with spin-sensitive transport experiments. Specifically, we quantitatively image the evolution of individual nanoscale antiferromagnetic domains in 200 nm thin films of Cr 2 O 3 in real space and across the paramagnet-to-antiferromagnet phase transition, finding an average domain size of 230 nm, several times larger than the average grain size in the film. These experiments allow us to discern key properties of the Cr 2 O 3 thin film, including the boundary magnetic moment density, the variation of critical temperature throughout the film, the mechanism of domain formation, and the strength of exchange coupling between individual grains comprising the film. Our work offers novel insights into the magnetic ordering mechanism of Cr 2 O 3 and firmly establishes single-spin magnetometry as a versatile and widely applicable tool for addressing antiferromagnetic thin films on the nanoscale. © 2019 American Chemical Society.