Search Results

Now showing 1 - 4 of 4
  • Item
    An Injectable Hybrid Hydrogel with Oriented Short Fibers Induces Unidirectional Growth of Functional Nerve Cells
    (Weinheim : Wiley-VCH, 2017) Omidinia-Anarkoli, Abdolrahman; Boesveld, Sarah; Tuvshindorj, Urandelger; Rose, Jonas C.; Haraszti, Tamás; De Laporte, Laura
    To regenerate soft aligned tissues in living organisms, low invasive biomaterials are required to create 3D microenvironments with a structural complexity to mimic the tissue's native architecture. Here, a tunable injectable hydrogel is reported, which allows precise engineering of the construct's anisotropy in situ. This material is defined as an Anisogel, representing a new type of tissue regenerative therapy. The Anisogel comprises a soft hydrogel, surrounding magneto-responsive, cell adhesive, short fibers, which orient in situ in the direction of a low external magnetic field, before complete gelation of the matrix. The magnetic field can be removed after gelation of the biocompatible gel precursor, which fixes the aligned fibers and preserves the anisotropic structure of the Anisogel. Fibroblasts and nerve cells grow and extend unidirectionally within the Anisogels, in comparison to hydrogels without fibers or with randomly oriented fibers. The neurons inside the Anisogel show spontaneous electrical activity with calcium signals propagating along the anisotropy axis of the material. The reported system is simple and elegant and the short magneto-responsive fibers can be produced with an effective high-throughput method, ideal for a minimal invasive route for aligned tissue therapy.
  • Item
    Highly Conductive, Stretchable, and Cell-Adhesive Hydrogel by Nanoclay Doping
    (Weinheim : Wiley-VCH, 2019) Tondera, Christoph; Akbar, Teuku Fawzul; Thomas, Alvin Kuriakose; Lin, Weilin; Werner, Carsten; Busskamp, Volker; Zhang, Yixin; Minev, Ivan R.
    Electrically conductive materials that mimic physical and biological properties of tissues are urgently required for seamless brain-machine interfaces. Here, a multinetwork hydrogel combining electrical conductivity of 26 S m-1 , stretchability of 800%, and tissue-like elastic modulus of 15 kPa with mimicry of the extracellular matrix is reported. Engineering this unique set of properties is enabled by a novel in-scaffold polymerization approach. Colloidal hydrogels of the nanoclay Laponite are employed as supports for the assembly of secondary polymer networks. Laponite dramatically increases the conductivity of in-scaffold polymerized poly(ethylene-3,4-diethoxy thiophene) in the absence of other dopants, while preserving excellent stretchability. The scaffold is coated with a layer containing adhesive peptide and polysaccharide dextran sulfate supporting the attachment, proliferation, and neuronal differentiation of human induced pluripotent stem cells directly on the surface of conductive hydrogels. Due to its compatibility with simple extrusion printing, this material promises to enable tissue-mimetic neurostimulating electrodes.
  • Item
    Magnetization Dynamics of an Individual Single-Crystalline Fe-Filled Carbon Nanotube
    (Weinheim : Wiley-VCH, 2019) Lenz, Kilian; Narkowicz, Ryszard; Wagner, Kai; Reiche, Christopher F.; Körner, Julia; Schneider, Tobias; Kákay, Attila; Schultheiss, Helmut; Weissker, Uhland; Wolf, Daniel; Suter, Dieter; Büchner, Bernd; Fassbender, Jürgen; Mühl, Thomas; Lindner, Jürgen
    The magnetization dynamics of individual Fe-filled multiwall carbon-nanotubes (FeCNT), grown by chemical vapor deposition, are investigated by microresonator ferromagnetic resonance (FMR) and Brillouin light scattering (BLS) microscopy and corroborated by micromagnetic simulations. Currently, only static magnetometry measurements are available. They suggest that the FeCNTs consist of a single-crystalline Fe nanowire throughout the length. The number and structure of the FMR lines and the abrupt decay of the spin-wave transport seen in BLS indicate, however, that the Fe filling is not a single straight piece along the length. Therefore, a stepwise cutting procedure is applied in order to investigate the evolution of the ferromagnetic resonance lines as a function of the nanowire length. The results show that the FeCNT is indeed not homogeneous along the full length but is built from 300 to 400 nm long single-crystalline segments. These segments consist of magnetically high quality Fe nanowires with almost the bulk values of Fe and with a similar small damping in relation to thin films, promoting FeCNTs as appealing candidates for spin-wave transport in magnonic applications. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    A Light-Driven Microgel Rotor
    (Weinheim : Wiley-VCH, 2019) Zhang, Hang; Koens, Lyndon; Lauga, Eric; Mourran, Ahmed; Möller, Martin
    The current understanding of motility through body shape deformation of micro-organisms and the knowledge of fluid flows at the microscale provides ample examples for mimicry and design of soft microrobots. In this work, a 2D spiral is presented that is capable of rotating by non-reciprocal curling deformations. The body of the microswimmer is a ribbon consisting of a thermoresponsive hydrogel bilayer with embedded plasmonic gold nanorods. Such a system allows fast local photothermal heating and nonreciprocal bending deformation of the hydrogel bilayer under nonequilibrium conditions. It is shown that the spiral acts as a spring capable of large deformations thanks to its low stiffness, which is tunable by the swelling degree of the hydrogel and the temperature. Tethering the ribbon to a freely rotating microsphere enables rotational motion of the spiral by stroboscopic irradiation. The efficiency of the rotor is estimated using resistive force theory for Stokes flow. This research demonstrates microscopic locomotion by the shape change of a spiral and may find applications in the field of microfluidics, or soft microrobotics.