Search Results

Now showing 1 - 6 of 6
  • Item
    Complete Genome Sequence of a New Ruminococcaceae Bacterium Isolated from Anaerobic Biomass Hydrolysis
    (Washington, DC : American Soc. for Microbiology, 2018) Hahnke, Sarah; Abendroth, Christian; Langer, Thomas; Codoñer, Francisco M.; Ramm, Patrice; Porcar, Manuel; Luschnig, Olaf; Klocke, Michael
    A new Ruminococcaceae bacterium, strain HV4-5-B5C, participating in the anaerobic digestion of grass, was isolated from a mesophilic two-stage laboratoryscale leach bed biogas system. The draft annotated genome sequence presented in this study and 16S rRNA gene sequence analysis indicated the affiliation of HV4-5- B5C with the family Ruminococcaceae outside recently described genera. © 2018 Hahnke et al.
  • Item
    Have wind turbines in Germany generated electricity as would be expected from the prevailing wind conditions in 2000-2014?
    (San Francisco, Ca. : PLOS, 2019) Germer, Sonja; Kleidon, Axel
    The planning of the energy transition from fossil fuels to renewables requires estimates for how much electricity wind turbines can generate from the prevailing atmospheric conditions. Here, we estimate monthly ideal wind energy generation from datasets of wind speeds, air density and installed wind turbines in Germany and compare these to reported actual yields. Both yields were used in a statistical model to identify and quantify factors that reduced actual compared to ideal yields. The installed capacity within the region had no significant influence. Turbine age and park size resulted in significant yield reductions. Predicted yields increased from 9.1 TWh/a in 2000 to 58.9 TWh/a in 2014 resulting from an increase in installed capacity from 5.7 GW to 37.6 GW, which agrees very well with reported estimates for Germany. The age effect, which includes turbine aging and possibly other external effects, lowered yields from 3.6 to 6.7% from 2000 to 2014. The effect of park size decreased annual yields by 1.9% throughout this period. However, actual monthly yields represent on average only 73.7% of the ideal yields, with unknown causes. We conclude that the combination of ideal yields predicted from wind conditions with observed yields is suitable to derive realistic estimates of wind energy generation as well as realistic resource potentials. © 2019 Germer, Kleidon. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
  • Item
    Proximal Soil Sensing - A Contribution for Species Habitat Distribution Modelling of Earthworms in Agricultural Soils?
    (San Francisco, California, US : PLOS, 2016) Schirrmann, Michael; Joschko, Monika; Gebbers, Robin; Kramer, Eckart; Zörner, Mirjam; Barkusky, Dietmar; Timmer, Jens
    Background: Earthworms are important for maintaining soil ecosystem functioning and serve as indicators of soil fertility. However, detection of earthworms is time-consuming, which hinders the assessment of earthworm abundances with high sampling density over entire fields. Recent developments of mobile terrestrial sensor platforms for proximal soil sensing (PSS) provided new tools for collecting dense spatial information of soils using various sensing principles. Yet, the potential of PSS for assessing earthworm habitats is largely unexplored. This study investigates whether PSS data contribute to the spatial prediction of earthworm abundances in species distribution models of agricultural soils. Methodology/Principal Findings: Proximal soil sensing data, e.g., soil electrical conductivity (EC), pH, and near infrared absorbance (NIR), were collected in real-time in a field with two management strategies (reduced tillage / conventional tillage) and sandy to loam soils. PSS was related to observations from a long-term (11 years) earthworm observation study conducted at 42 plots. Earthworms were sampled from 0.5 x 0.5 x 0.2 m³ soil blocks and identified to species level. Sensor data were highly correlated with earthworm abundances observed in reduced tillage but less correlated with earthworm abundances observed in conventional tillage. This may indicate that management influences the sensor-earthworm relationship. Generalized additive models and state-space models showed that modelling based on data fusion from EC, pH, and NIR sensors produced better results than modelling without sensor data or data from just a single sensor. Regarding the individual earthworm species, particular sensor combinations were more appropriate than others due to the different habitat requirements of the earthworms. Earthworm species with soil-specific habitat preferences were spatially predicted with higher accuracy by PSS than more ubiquitous species. Conclusions/Significance: Our findings suggest that PSS contributes to the spatial modelling of earthworm abundances at field scale and that it will support species distribution modelling in the attempt to understand the soil-earthworm relationships in agroecosystems.
  • Item
    Complete Genome Sequence of a New Firmicutes Species Isolated from Anaerobic Biomass Hydrolysis
    (Washington, DC : American Soc. for Microbiology, 2017) Abendroth, Christian; Hahnke, Sarah; Codoñer, Francisco M.; Klocke, Michael; Luschnig, Olaf; Porcar, Manuel
    A new Firmicutes isolate, strain HV4-6-A5C, was obtained from the hydrolysis stage of a mesophilic and anaerobic two-stage lab-scale leach-bed system for biomethanation of fresh grass. It is assumed that the bacterial isolate contributes to plant biomass degradation. Here, we report a draft annotated genome sequence of this organism. © 2017 Abendroth et al.
  • Item
    Biogas residue parameterization for soil organic matter modeling
    (San Francisco, California, US : PLOS, 2018-10-12) Prays, Nadia; Dominik, Peter; Sänger, Anja; Franko, Uwe
    A variety of biogas residues (BGRs) have been used as organic fertilizer in agriculture. The use of these residues affects the storage of soil organic matter (SOM). In most cases, SOM changes can only be determined in long-term observations. Therefore, predictive modeling can be an efficient alternative, provided that the parameters required by the model are known for the considered BGRs. This study was conducted as a first approach to estimating the organic matter (OM) turnover parameters of BGRs for process modeling. We used carbon mineralization data from six BGRs from an incubation experiment, representing a range of substrate inputs, to calculate a turnover coefficient k controlling the velocity of fresh organic matter (FOM) decay and a synthesis coefficient describing the SOM creation from FOM. An SOM turnover model was applied in inverse mode to identify both parameters. In a second step, we related the parameters k and to chemical properties of the corresponding BGRs using a linear regression model and applied them to a long-term scenario simulation. According to the results of the incubation experiment, the k values ranged between 0.28 and 0.58 d-1 depending on the chemical composition of the FOM. The estimated values ranged between 0.8 and 0.89. The best linear relationship of k was found to occur with pH (R2 = 0.863). Parameter is related to the Ct/Norg ratio (R2 = 0.696). Long-term scenario simulations emphasized the necessity of specific k and values related to the chemical properties for each BGR. However, further research is needed to validate and improve these preliminary results. © 2018 Prays et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
  • Item
    A systematic review of non-productivity-related animal-based indicators of heat stress resilience in dairy cattle
    (San Francisco, California, US : PLOS, 2018-11-1) Galán, Elena; Llonch, Pol; Villagrá, Arantxa; Levit, Harel; Pinto, Severino; del Prado, Agustín
    Introduction Projected temperature rise in the upcoming years due to climate change has increased interest in studying the effects of heat stress in dairy cows. Environmental indices are commonly used for detecting heat stress, but have been used mainly in studies focused on the productivity-related effects of heat stress. The welfare approach involves identifying physiological and behavioural measurements so as to start heat stress mitigation protocols before the appearance of impending severe health or production issues. Therefore, there is growing interest in studying the effects of heat stress on welfare. This systematic review seeks to summarise the animal-based responses to heat stress (physiological and behavioural, excluding productivity) that have been used in scientific literature. Methods Using systematic review guidelines set by PRISMA, research articles were identified, screened and summarised based on inclusion criteria for physiology and behaviour, excluding productivity, for animal-based resilience indicators. 129 published articles were reviewed to determine which animal-based indicators for heat stress were most frequently used in dairy cows. Results The articles considered report at least 212 different animal-based indicators that can be aggregated into body temperature, feeding, physiological response, resting, drinking, grazing and pasture-related behaviour, reactions to heat management and others. The most common physiological animal-based indicators are rectal temperature, respiration rate and dry matter intake, while the most common behavioural indicators are time spent lying, standing and feeding. Conclusion Although body temperature and respiration rate are the animal-based indicators most frequently used to assess heat stress in dairy cattle, when choosing an animal-based indicator for detecting heat stress using scientific literature to establish thresholds, characteristics that influence the scale of the response and the definition of heat stress must be taken into account, e.g. breed, lactation stage, milk yield, system type, climate region, bedding type, diet and cooling management strategies. © 2018 Galan∗E.∗Elena et al.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.