Search Results

Now showing 1 - 3 of 3
  • Item
    Freshwater requirements of large-scale bioenergy plantations for limiting global warming to 1.5 °C
    (Bristol : IOP Publ., 2019) Stenzel, Fabian; Gerten, Dieter; Werner, Constanze; Jägermeyr, Jonas
    Limiting mean global warming to well below 2 °C will probably require substantial negative emissions (NEs) within the 21st century. To achieve these, bioenergy plantations with subsequent carbon capture and storage (BECCS) may have to be implemented at a large scale. Irrigation of these plantations might be necessary to increase the yield, which is likely to put further pressure on already stressed freshwater systems. Conversely, the potential of bioenergy plantations (BPs) dedicated to achieving NEs through CO2 assimilation may be limited in regions with low freshwater availability. This paper provides a first-order quantification of the biophysical potentials of BECCS as a negative emission technology contribution to reaching the 1.5 °C warming target, as constrained by associated water availabilities and requirements. Using a global biosphere model, we analyze the availability of freshwater for irrigation of BPs designed to meet the projected NEs to fulfill the 1.5 °C target, spatially explicitly on areas not reserved for ecosystem conservation or agriculture. We take account of the simultaneous water demands for agriculture, industries, and households and also account for environmental flow requirements (EFRs) needed to safeguard aquatic ecosystems. Furthermore, we assess to what extent different forms of improved water management on the suggested BPs and on cropland may help to reduce the freshwater abstractions. Results indicate that global water withdrawals for irrigation of BPs range between ∼400 and ∼3000 km3 yr−1, depending on the scenario and the conversion efficiency of the carbon capture and storage process. Consideration of EFRs reduces the NE potential significantly, but can partly be compensated for by improved on-field water management.
  • Item
    Negative emissions—Part 1: Research landscape and synthesis
    (Bristol : IOP Publ., 2018) Minx, Jan C.; Lamb, William F.; Callaghan, Max W.; Fuss, Sabine; Hilaire, Jérôme; Creutzig, Felix; Amann, Thorben; Beringer, Tim; de Oliveira Garcia, Wagner; Hartmann, Jens; Khanna, Tarun; Lenzi, Dominic; Luderer, Gunnar; Nemet, Gregory F.; Rogelj, Joeri; Smith, Pete; Vicente Vicente, José Luis; Wilcox, Jennifer; del Mar Zamora Dominguez, Maria
    With the Paris Agreement's ambition of limiting climate change to well below 2 °C, negative emission technologies (NETs) have moved into the limelight of discussions in climate science and policy. Despite several assessments, the current knowledge on NETs is still diffuse and incomplete, but also growing fast. Here, we synthesize a comprehensive body of NETs literature, using scientometric tools and performing an in-depth assessment of the quantitative and qualitative evidence therein. We clarify the role of NETs in climate change mitigation scenarios, their ethical implications, as well as the challenges involved in bringing the various NETs to the market and scaling them up in time. There are six major findings arising from our assessment: first, keeping warming below 1.5 °C requires the large-scale deployment of NETs, but this dependency can still be kept to a minimum for the 2 °C warming limit. Second, accounting for economic and biophysical limits, we identify relevant potentials for all NETs except ocean fertilization. Third, any single NET is unlikely to sustainably achieve the large NETs deployment observed in many 1.5 °C and 2 °C mitigation scenarios. Yet, portfolios of multiple NETs, each deployed at modest scales, could be invaluable for reaching the climate goals. Fourth, a substantial gap exists between the upscaling and rapid diffusion of NETs implied in scenarios and progress in actual innovation and deployment. If NETs are required at the scales currently discussed, the resulting urgency of implementation is currently neither reflected in science nor policy. Fifth, NETs face severe barriers to implementation and are only weakly incentivized so far. Finally, we identify distinct ethical discourses relevant for NETs, but highlight the need to root them firmly in the available evidence in order to render such discussions relevant in practice.
  • Item
    Negative emissions—Part 3: Innovation and upscaling
    (Bristol : IOP Publ., 2018) Nemet, Gregory F.; Callaghan, Max W.; Creutzig, Felix; Fuss, Sabine; Hartmann, Jens; Hilaire, Jérôme; Lamb, William F.; Minx, Jan C.; Rogers, Sophia; Smith, Pete
    We assess the literature on innovation and upscaling for negative emissions technologies (NETs) using a systematic and reproducible literature coding procedure. To structure our review, we employ the framework of sequential stages in the innovation process, with which we code each NETs article in innovation space. We find that while there is a growing body of innovation literature on NETs, 59% of the articles are focused on the earliest stages of the innovation process, 'research and development' (R&D). The subsequent stages of innovation are also represented in the literature, but at much lower levels of activity than R&D. Distinguishing between innovation stages that are related to the supply of the technology (R&D, demonstrations, scale up) and demand for the technology (demand pull, niche markets, public acceptance), we find an overwhelming emphasis (83%) on the supply side. BECCS articles have an above average share of demand-side articles while direct air carbon capture and storage has a very low share. Innovation in NETs has much to learn from successfully diffused technologies; appealing to heterogeneous users, managing policy risk, as well as understanding and addressing public concerns are all crucial yet not well represented in the extant literature. Results from integrated assessment models show that while NETs play a key role in the second half of the 21st century for 1.5 °C and 2 °C scenarios, the major period of new NETs deployment is between 2030 and 2050. Given that the broader innovation literature consistently finds long time periods involved in scaling up and deploying novel technologies, there is an urgency to developing NETs that is largely unappreciated. This challenge is exacerbated by the thousands to millions of actors that potentially need to adopt these technologies for them to achieve planetary scale. This urgency is reflected neither in the Paris Agreement nor in most of the literature we review here. If NETs are to be deployed at the levels required to meet 1.5 °C and 2 °C targets, then important post-R&D issues will need to be addressed in the literature, including incentives for early deployment, niche markets, scale-up, demand, and—particularly if deployment is to be hastened—public acceptance.