Search Results

Now showing 1 - 5 of 5
  • Item
    Interval stability for complex systems
    (Bristol : Institute of Physics Publishing, 2018) Klinshov, V.V.; Kirillov, S.; Kurths, J.; Nekorkin, V.I.
    Stability of dynamical systems against strong perturbations is an important problem of nonlinear dynamics relevant to many applications in various areas. Here, we develop a novel concept of interval stability, referring to the behavior of the perturbed system during a finite time interval. Based on this concept, we suggest new measures of stability, namely interval basin stability (IBS) and interval stability threshold (IST). IBS characterizes the likelihood that the perturbed system returns to the stable regime (attractor) in a given time. IST provides the minimal magnitude of the perturbation capable to disrupt the stable regime for a given interval of time. The suggested measures provide important information about the system susceptibility to external perturbations which may be useful for practical applications. Moreover, from a theoretical viewpoint the interval stability measures are shown to bridge the gap between linear and asymptotic stability. We also suggest numerical algorithms for quantification of the interval stability characteristics and demonstrate their potential for several dynamical systems of various nature, such as power grids and neural networks.
  • Item
    Stability threshold approach for complex dynamical systems
    (Bristol : Institute of Physics Publishing, 2016) Klinshov, V.V.; Nekorkin, V.I.; Kurths, J.
  • Item
    Timing of transients: Quantifying reaching times and transient behavior in complex systems
    (Bristol : Institute of Physics Publishing, 2017) Kittel, T.; Heitzig, J.; Webster, K.; Kurths, J.
    In dynamical systems, one may ask how long it takes for a trajectory to reach the attractor, i.e. how long it spends in the transient phase. Although for a single trajectory the mathematically precise answer may be infinity, it still makes sense to compare different trajectories and quantify which of them approaches the attractor earlier. In this article, we categorize several problems of quantifying such transient times. To treat them, we propose two metrics, area under distance curve and regularized reaching time, that capture two complementary aspects of transient dynamics. The first, area under distance curve, is the distance of the trajectory to the attractor integrated over time. It measures which trajectories are 'reluctant', i.e. stay distant from the attractor for long, or 'eager' to approach it right away. Regularized reaching time, on the other hand, quantifies the additional time (positive or negative) that a trajectory starting at a chosen initial condition needs to approach the attractor as compared to some reference trajectory. A positive or negative value means that it approaches the attractor by this much 'earlier' or 'later' than the reference, respectively. We demonstrated their substantial potential for application with multiple paradigmatic examples uncovering new features.
  • Item
    Recovery time after localized perturbations in complex dynamical networks
    (Bristol : Institute of Physics Publishing, 2017) Mitra, C.; Kittel, T.; Choudhary, A.; Kurths, J.; Donner, R.V.
    Maintaining the synchronous motion of dynamical systems interacting on complex networks is often critical to their functionality. However, real-world networked dynamical systems operating synchronously are prone to random perturbations driving the system to arbitrary states within the corresponding basin of attraction, thereby leading to epochs of desynchronized dynamics with a priori unknown durations. Thus, it is highly relevant to have an estimate of the duration of such transient phases before the system returns to synchrony, following a random perturbation to the dynamical state of any particular node of the network. We address this issue here by proposing the framework of single-node recovery time (SNRT) which provides an estimate of the relative time scales underlying the transient dynamics of the nodes of a network during its restoration to synchrony. We utilize this in differentiating the particularly slow nodes of the network from the relatively fast nodes, thus identifying the critical nodes which when perturbed lead to significantly enlarged recovery time of the system before resuming synchronized operation. Further, we reveal explicit relationships between the SNRT values of a network, and its global relaxation time when starting all the nodes from random initial conditions. Earlier work on relaxation time generally focused on investigating its dependence on macroscopic topological properties of the respective network. However, we employ the proposed concept for deducing microscopic relationships between topological features of nodes and their respective SNRT values. The framework of SNRT is further extended to a measure of resilience of the different nodes of a networked dynamical system. We demonstrate the potential of SNRT in networks of Rössler oscillators on paradigmatic topologies and a model of the power grid of the United Kingdom with second-order Kuramoto-type nodal dynamics illustrating the conceivable practical applicability of the proposed concept.
  • Item
    Potentials and limits to basin stability estimation
    (Bristol : Institute of Physics Publishing, 2017) Schultz, P.; Menck, P.J.; Heitzig, J.; Kurths, J.
    Stability assessment methods for dynamical systems have recently been complemented by basin stability and derived measures, i.e. probabilistic statements whether systems remain in a basin of attraction given a distribution of perturbations. Their application requires numerical estimation via Monte Carlo sampling and integration of differential equations. Here, we analyse the applicability of basin stability to systems with basin geometries that are challenging for this numerical method, having fractal basin boundaries and riddled or intermingled basins of attraction. We find that numerical basin stability estimation is still meaningful for fractal boundaries but reaches its limits for riddled basins with holes.