Search Results

Now showing 1 - 3 of 3
  • Item
    Two types of magnetic shape-memory effects from twinned microstructure and magneto-structural coupling in Fe1 +yTe
    (Washington : National Academy of Sciences, 2019) Rößler, S.; Koz, C.; Wang, Z.; Skourski, Y.; Doerr, M.; Kasinathan, D.; Rosner, H.; Schmidt, M.; Schwarz, U.; Rößler, U.K.; Wirth, S.
    A detailed experimental investigation of Fe1+yTe (y = 0.11, 0.12) using pulsed magnetic fields up to 60 T confirms remarkable magnetic shape-memory (MSM) effects. These effects result from magnetoelastic transformation processes in the low-temperature antiferromagnetic state of these materials. The observation of modulated and finely twinned microstructure at the nanoscale through scanning tunneling microscopy establishes a behavior similar to that of thermoelastic martensite. We identified the observed, elegant hierarchical twinning pattern of monoclinic crystallographic domains as an ideal realization of crossing twin bands. The antiferromagnetism of the monoclinic ground state allows for a magnetic-field–induced reorientation of these twin variants by the motion of one type of twin boundaries. At sufficiently high magnetic fields, we observed a second isothermal transformation process with large hysteresis for different directions of applied field. This gives rise to a second MSM effect caused by a phase transition back to the field-polarized tetragonal lattice state.
  • Item
    Spectral dynamics of shift current in ferroelectric semiconductor SbSI
    (Washington : National Academy of Sciences, 2019) Sotome, M.; Nakamura, M.; Fujioka, J.; Ogino, M.; Kaneko, Y.; Morimoto, T.; Zhang, Y.; Kawasaki, M.; Nagaosa, N.; Tokura, Y.; Ogawa, N.
    Photoexcitation in solids brings about transitions of electrons/ holes between different electronic bands. If the solid lacks an inversion symmetry, these electronic transitions support spontaneous photocurrent due to the geometric phase of the constituting electronic bands: the Berry connection. This photocurrent, termed shift current, is expected to emerge on the timescale of primary photoexcitation process. We observe ultrafast evolution of the shift current in a prototypical ferroelectric semiconductor antimony sulfur iodide (SbSI) by detecting emitted terahertz electromagnetic waves. By sweeping the excitation photon energy across the bandgap, ultrafast electron dynamics as a source of terahertz emission abruptly changes its nature, reflecting a contribution of Berry connection on interband optical transition. The shift excitation carries a net charge flow and is followed by a swing over of the electron cloud on a subpicosecond timescale. Understanding these substantive characters of the shift current with the help of first-principles calculation will pave the way for its application to ultrafast sensors and solar cells.
  • Item
    Ideals, practices, and future prospects of stakeholder involvement in sustainability science
    (Washington : National Academy of Sciences, 2017) Mielke, J.; Vermaßen, H.; Ellenbeck, S.
    This paper evaluates current stakeholder involvement (SI) practices in science through a web-based survey among scholars and researchers engaged in sustainability or transition research. It substantiates previous conceptual work with evidence from practice by building on four ideal types of SI in science. The results give an interesting overview of the varied landscape of SI in sustainability science, ranging from the kinds of topics scientists work on with stakeholders, over scientific trade-offs that arise in the field, to improvements scientists wish for. Furthermore, the authors describe a discrepancy between scientists’ ideals and practices when working with stakeholders. On the conceptual level, the data reflect that the democratic type of SI is the predominant one concerning questions on the understanding of science, the main goal, the stage of involvement in the research process, and the science–policy interface. The fact that respondents expressed agreement to several types shows they are guided by multiple and partly conflicting ideals when working with stakeholders. We thus conclude that more conceptual exchange between practitioners, as well as more qualitative research on the concepts behind practices, is needed to better understand the stakeholder–scientist nexus.