Search Results

Now showing 1 - 10 of 23
  • Item
    Ultra-wide bandgap, conductive, high mobility, and high quality melt-grown bulk ZnGa2O4 single crystals
    (Melville, NY : AIP Publ., 2019) Galazka, Zbigniew; Ganschow, Steffen; Schewski, Robert; Irmscher, Klaus; Klimm, Detlef; Kwasniewski, Albert; Pietsch, Mike; Fiedler, Andreas; Schulze-Jonack, Isabelle; Albrecht, Martin; Schröder, Thomas; Bickermann, Matthias
    Truly bulk ZnGa2O4 single crystals were obtained directly from the melt. High melting point of 1900 ± 20 °C and highly incongruent evaporation of the Zn- and Ga-containing species impose restrictions on growth conditions. The obtained crystals are characterized by a stoichiometric or near-stoichiometric composition with a normal spinel structure at room temperature and by a narrow full width at half maximum of the rocking curve of the 400 peak of (100)-oriented samples of 23 arcsec. ZnGa2O4 is a single crystalline spinel phase with the Ga/Zn atomic ratio up to about 2.17. Melt-grown ZnGa2O4 single crystals are thermally stable up to 1100 and 700 °C when subjected to annealing for 10 h in oxidizing and reducing atmospheres, respectively. The obtained ZnGa2O4 single crystals were either electrical insulators or n-type semiconductors/degenerate semiconductors depending on growth conditions and starting material composition. The as-grown semiconducting crystals had the resistivity, free electron concentration, and maximum Hall mobility of 0.002–0.1 Ωcm, 3 × 1018–9 × 1019 cm−3, and 107 cm2 V−1 s−1, respectively. The semiconducting crystals could be switched into the electrically insulating state by annealing in the presence of oxygen at temperatures ≥700 °C for at least several hours. The optical absorption edge is steep and originates at 275 nm, followed by full transparency in the visible and near infrared spectral regions. The optical bandgap gathered from the absorption coefficient is direct with a value of about 4.6 eV, close to that of β-Ga2O3. Additionally, with a lattice constant of a = 8.3336 Å, ZnGa2O4 may serve as a good lattice-matched substrate for magnetic Fe-based spinel films.
  • Item
    Electron beam-induced immobilization of laccase on porous supports for waste water treatment applications
    (Basel : MDPI AG, 2014) Jahangiri, E.; Reichelt, S.; Thomas, I.; Hausmann, K.; Schlosser, D.; Schulze, A.
    The versatile oxidase enzyme laccase was immobilized on porous supports such as polymer membranes and cryogels with a view of using such biocatalysts in bioreactors aiming at the degradation of environmental pollutants in wastewater. Besides a large surface area for supporting the biocatalyst, the aforementioned porous systems also offer the possibility for simultaneous filtration applications in wastewater treatment. Herein a "green" water-based, initiator-free, and straightforward route to highly reactive membrane and cryogel-based bioreactors is presented, where laccase was immobilized onto the porous polymer supports using a water-based electron beam-initiated grafting reaction. In a second approach, the laccase redox mediators 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and syringaldehyde were cross-linked instead of the enzyme via electron irradiation in a frozen aqueous poly(acrylate) mixture in a one pot set-up, yielding a mechanical stable macroporous cryogel with interconnected pores ranging from 10 to 50 μm in size. The membranes as well as the cryogels were characterized regarding their morphology, chemical composition, and catalytic activity. The reactivity towards waste-water pollutants was demonstrated by the degradation of the model compound bisphenol A (BPA). Both membrane- and cryogel-immobilized laccase remained highly active after electron beam irradiation. Apparent specific BPA removal rates were higher for cryogel-than for membrane-immobilized and free laccase, whereas membrane-immobilized laccase was more stable with respect to maintenance of enzymatic activity and prevention of enzyme leakage from the carrier than cryogel-immobilized laccase. Cryogel-immobilized redox mediators remained functional in accelerating the laccase-catalyzed BPA degradation, and especially ABTS was found to act more efficiently in immobilized than in freely dissolved state.
  • Item
    Experimental strategies for optical pump - Soft x-ray probe experiments at the LCLS
    (Bristol : Institute of Physics Publishing, 2014) McFarland, B.K.; Berrah, N.; Bostedt, C.; Bozek, J.; Bucksbaum, P.H.; Castagna, J.C.; Coffee, R.N.; Cryan, J.P.; Fang, L.; Farrell, J.P.; Feifel, R.; Gaffney, K.J.; Glownia, J.M.; Martinez, T.J.; Miyabe, S.; Mucke, M.; Murphy, B.; Natan, A.; Osipov, T.; Petrovic, V.S.; Schorb, S.; Schultz, T.; Spector, L.S.; Swiggers, M.; Tarantelli, F.; Tenney, I.; Wang, S.; White, J.L.; White, W.; Gühr, M.
    Free electron laser (FEL) based x-ray sources show great promise for use in ultrafast molecular studies due to the short pulse durations and site/element sensitivity in this spectral range. However, the self amplified spontaneous emission (SASE) process mostly used in FELs is intrinsically noisy resulting in highly fluctuating beam parameters. Additionally timing synchronization of optical and FEL sources adds delay jitter in pump-probe experiments. We show how we mitigate the effects of source noise for the case of ultrafast molecular spectroscopy of the nucleobase thymine. Using binning and resorting techniques allows us to increase time and spectral resolution. In addition, choosing observables independent of noisy beam parameters enhances the signal fidelity.
  • Item
    Optimization of quantum trajectories driven by strong-field waveforms
    (College Park : American Institute of Physics Inc., 2014) Haessler, S.; Balciunas, T.; Fan, G.; Andriukaitis, G.; Pugžlys, A.; Baltuška, A.; Witting, T.; Squibb, R.; Zaïr, A.; Tisch, J.W.G.; Marangos; Chipperfield, L.E.
    Quasifree field-driven electron trajectories are a key element of strong-field dynamics. Upon recollision with the parent ion, the energy transferred from the field to the electron may be released as attosecondduration extreme ultaviolet emission in the process of high-harmonic generation. The conventional sinusoidal driver fields set limitations on the maximum value of this energy transfer and the efficient return of the launched electron trajectories. It has been predicted that these limits can be significantly exceeded by an appropriately ramped-up cycle shape [L. E. Chipperfield et al., Phys. Rev. Lett. 102, 063003 (2009)]. Here, we present an experimental realization of similar cycle-shaped waveforms and demonstrate control of the high-harmonic generation process on the single-atom quantum level via attosecond steering of the electron trajectories.With our improved optical cycles, we boost the field ionization launching the electron trajectories, increase the subsequent field-to-electron energy transfer, and reduce the trajectory duration. We demonstrate, in realistic experimental conditions, 2 orders of magnitude enhancement of the generated extreme ultraviolet flux together with an increased spectral extension. This application, which is only one example of what can be achieved with cycle-shaped high-field light waves, has significant implications for attosecond spectroscopy and molecular self-probing.
  • Item
    Bite-outs and other depletions of mesospheric electrons
    (Amsterdam [u.a.] : Elsevier, 2011) Friedrich, M.; Rapp, M.; Plane, J.M.C.; Torkar, K.M.
    The ionised mesosphere is less understood than other parts of the ionosphere because of the challenges of making appropriate measurements in this complex region. We use rocket borne in situ measurements of absolute electron density by the Faraday rotation technique and accompanying DC-probe measurements to study the effect of particles on the D-region charge balance. Several examples of electron bite-outs, their actual depth as well as simultaneous observations of positive ions are presented. For a better understanding of the various dependencies we use the ratio Β/αi (attachment rate over ion-ion recombination coefficient), derived from the electron and ion density profiles by applying a simplified ion-chemical scheme, and correlate this term with solar zenith angle and moon brightness. The probable causes are different for day and night; recent in situ measurements support existing hypotheses for daytime cases, but also reveal behaviour at night hitherto not reported in the literature. Within the large range of Β/αi values obtained from the analysis of 28 high latitude night flights one finds that the intensity of scattered sunlight after sunset, and even moonlight, apparently can photodetach electrons from meteoric smoke particles (MSP) and molecular anions. The large range of values itself can best be explained by the variability of the MSPs and by occasionally occurring atomic oxygen impacting on the negative ion chemistry in the night-time mesosphere under disturbed conditions.
  • Item
    Bilayer insulator tunnel barriers for graphene-based vertical hot-electron transistors
    (Cambridge : Royal Society of Chemistry, 2015) Vaziri, S.; Belete, M.; Dentoni Litta, E.; Smith, A.D.; Lupina, G.; Lemme, M.C.; Östling, M.
    Vertical graphene-based device concepts that rely on quantum mechanical tunneling are intensely being discussed in the literature for applications in electronics and optoelectronics. In this work, the carrier transport mechanisms in semiconductor–insulator–graphene (SIG) capacitors are investigated with respect to their suitability as electron emitters in vertical graphene base transistors (GBTs). Several dielectric materials as tunnel barriers are compared, including dielectric double layers. Using bilayer dielectrics, we experimentally demonstrate significant improvements in the electron injection current by promoting Fowler–Nordheim tunneling (FNT) and step tunneling (ST) while suppressing defect mediated carrier transport. High injected tunneling current densities approaching 103 A cm−2 (limited by series resistance), and excellent current–voltage nonlinearity and asymmetry are achieved using a 1 nm thick high quality dielectric, thulium silicate (TmSiO), as the first insulator layer, and titanium dioxide (TiO2) as a high electron affinity second layer insulator. We also confirm the feasibility and effectiveness of our approach in a full GBT structure which shows dramatic improvement in the collector on-state current density with respect to the previously reported GBTs. The device design and the fabrication scheme have been selected with future CMOS process compatibility in mind. This work proposes a bilayer tunnel barrier approach as a promising candidate to be used in high performance vertical graphene-based tunneling devices.
  • Item
    Attosecond electron thermalization in laser-induced nonsequential multiple ionization: Hard versus glancing collisions
    (College Park, MD : Institute of Physics Publishing, 2008) Liu, X.; De Morisson Faria, C.F.; Becker, W.
    A recollision-based largely classical statistical model of laser-induced nonsequential multiple (N-fold) ionization of atoms is further explored. Upon its return to the ionic core, the first-ionized electron interacts with the other N - 1 bound electrons either through a contact or a Coulomb interaction. The returning electron may leave either immediately after this interaction or join the other electrons to form a thermalized complex which leaves the ion after the delay Δt, which is the sum of a thermalization time and a possible additional dwell time. Good agreement with the available triple and quadruple ionization data in neon and argon is obtained with the contact scenario and delays of Δt = 0.17 T and 0.265 T, respectively, with T the laser period. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
  • Item
    Towards time resolved core level photoelectron spectroscopy with femtosecond x-ray free-electron lasers
    (College Park, MD : Institute of Physics Publishing, 2008) Pietzsch, A.; Föhlisch, A.; Beye, M.; Deppe, M.; Hennies, F.; Nagasono, M.; Suljotil, E.; Wurth, W.; Gahl, C.; Dörich, K.; Melnikov, A.
    We have performed core level photoelectron spectroscopy on a W(110) single crystal with femtosecond XUV pulses from the free-electron laser at Hamburg (FLASH). We demonstrate experimentally and through theoretical modelling that for a suitable range of photon fluences per pulse, time-resolved photoemission experiments on solid surfaces are possible. Using FLASH pulses in combination with a synchronized optical laser, we have performed femtosecond time-resolved core-level photoelectron spectroscopy and observed sideband formation on the W 4f lines indicating a cross correlation between femtosecond optical and XUV pulses. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
  • Item
    Interference in strong-field ionization of a two-centre atomic system
    (College Park, MD : Institute of Physics Publishing, 2008) Ansari, Z.; Böttcher, M.; Manschwetus, B.; Rottke, H.; Sandner, W.; Verhoef, A.; Lezius, M.; Paulus, G.G.; Saenz, A.; Milošević, D.B.
    Strong-field photoionization of argon dimers by a few-cycle laser pulse is investigated using electron-ion coincidence momentum spectroscopy. The momentum distribution of the photoelectrons exhibits interference due to the emission from the two atomic argon centres, in analogy with a Young's doubleslit experiment. However, a simulation of the dimer photoelectron momentum spectrum based on the atomic spectrum supplemented with a theoretically derived interference term leads to distinct deviations from the experimental result. The deviations may have their origin in a complex electron dynamics during strong-field ionization of the Ar2 dimer. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
  • Item
    Interference structure of above-threshold ionization versus above-threshold detachment
    (Bristol : IOP, 2012) Korneev, Ph.A.; Popruzhenko, S.V.; Goreslavski, S.P.; Becker, W.; Paulus, G.G.; Fetić, B.; Milošević, D.B.
    Laser-induced electron detachment or ionization of atoms and negative ions is considered. In the context of the saddle-point evaluation of the strong-field approximation (SFA), the velocity maps of the direct electrons (those that do not undergo rescattering) exhibit a characteristic structure due to the constructive and destructive interference of electrons liberated from their parent atoms/ions within certain windows of time. This structure is defined by the above-threshold ionization rings at fixed electron energy and by two sets of curves in momentum space on which destructive interference occurs. The spectra obtained with the SFA are compared with those obtained by numerical solution of the time-dependent Schrödinger equation. For detachment, the agreement is excellent. For ionization, the effect of the Coulomb field is most pronounced for electrons emitted in a direction close to laser polarization, while for nearperpendicular emission the qualitative appearance of the spectrum is unaffected.