Search Results

Now showing 1 - 4 of 4
  • Item
    A quantification method for heat-decomposable methylglyoxal oligomers and its application on 1,3,5-trimethylbenzene SOA
    (Katlenburg-Lindau : EGU, 2017) Rodigast, Maria; Mutzel, Anke; Herrmann, Hartmut
    Methylglyoxal forms oligomeric compounds in the atmospheric aqueous particle phase, which could establish a significant contribution to the formation of aqueous secondary organic aerosol (aqSOA). Thus far, no suitable method for the quantification of methylglyoxal oligomers is available despite the great effort spent for structure elucidation. In the present study a simplified method was developed to quantify heat-decomposable methylglyoxal oligomers as a sum parameter. The method is based on the thermal decomposition of oligomers into methylglyoxal monomers. Formed methylglyoxal monomers were detected using PFBHA (O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride) derivatisation and gas chromatography-mass spectrometry (GC/MS) analysis. The method development was focused on the heating time (varied between 15 and 48h), pH during the heating process (pH Combining double low line 1-7), and heating temperature (50, 100°C). The optimised values of these method parameters are presented. The developed method was applied to quantify heat-decomposable methylglyoxal oligomers formed during the OH-radical oxidation of 1,3,5-trimethylbenzene (TMB) in the Leipzig aerosol chamber (LEipziger AerosolKammer, LEAK). Oligomer formation was investigated as a function of seed particle acidity and relative humidity. A fraction of heat-decomposable methylglyoxal oligomers of up to 8% in the produced organic particle mass was found, highlighting the importance of those oligomers formed solely by methylglyoxal for SOA formation. Overall, the present study provides a new and suitable method for quantification of heat-decomposable methylglyoxal oligomers in the aqueous particle phase.
  • Item
    Graphene oxide functional nanohybrids with magnetic nanoparticles for improved vectorization of doxorubicin to neuroblastoma cells
    (Basel : MDPI AG, 2019) Lerra, L.; Farfalla, A.; Sanz, B.; Cirillo, G.; Vittorio, O.; Voli, F.; Grand, M.L.; Curcio, M.; Nicoletta, F.P.; Dubrovska, A.; Hampel, S.; Iemma, F.; Goya, G.F.
    With the aim to obtain a site-specific doxorubicin (DOX) delivery in neuroblastoma SH-SY5Y cells, we designed an hybrid nanocarrier combining graphene oxide (GO) and magnetic iron oxide nanoparticles (MNPs), acting as core elements, and a curcumin–human serum albumin conjugate as functional coating. The nanohybrid, synthesized by redox reaction between the MNPs@GO system and albumin bioconjugate, consisted of MNPs@GO nanosheets homogeneously coated by the bioconjugate as verified by SEM investigations. Drug release experiments showed a pH-responsive behavior with higher release amounts in acidic (45% at pH 5.0) vs. neutral (28% at pH 7.4) environments. Cell internalization studies proved the presence of nanohybrid inside SH-SY5Y cytoplasm. The improved efficacy obtained in viability assays is given by the synergy of functional coating and MNPs constituting the nanohybrids: while curcumin moieties were able to keep low DOX cytotoxicity levels (at concentrations of 0.44–0.88 µM), the presence of MNPs allowed remote actuation on the nanohybrid by a magnetic field, increasing the dose delivered at the target site.
  • Item
    Fluorosolvatochromism of furanyl- and thiophenyl-substituted acetophenones
    (London : RSC, 2015) Friebe, Nadine; Schreiter, Katja; Kübel, Joachim; Dietzek, Benjamin; Moszner, Norbert; Burtscher, Peter; Oehlke, Alexander; Spange, Stefan
    A series of para-substituted acetophenones bearing a furanyl or a thiophenyl moiety show a large Stokes-shift, which is a function of various solvent properties. Photophysical properties such as emission lifetime of the compounds have been determined using time-correlated-single photon counting to secure the intrinsic fluorescence behaviour. The solvent dependent position of the UV/Vis emission band [small nu, Greek, tilde]max,em of the compounds has been measured in 26 various solvents. The influence of the solvent on [small nu, Greek, tilde]max,em is of very complex nature and mathematically analysed by multiple square linear solvation energy (LSE)-correlation analysis using Catalán's four-solvent parameter set. Solvent acidity has a strong influence on the bathochromic shift of 2,5-disubstituted furan derivatives compared to the non-5-substituted furan and thiophene derivatives, which show a contrary behaviour. Therefore, the 5-cyanofuranyl-substituted acetophenone derivative is useful as a probe for measuring environmental properties by fluorescence spectroscopy.
  • Item
    Trends in the composition of wet deposition: Effects of the atmospheric rehabilitation in East-Germany
    (Milton Park : Taylor & Francis, 2017) Marquardt, Wolfgang; Brüggemann, Erika; Ihle, Peter
    The chemical components in precipitation largely depend on type and quantity of emissions on the course of the air masses at the sampling site. Beginning in 1982, the concentrations of major ions in precipitation at initially 3 sites are described in total as well as arrival sectors. For regions with specific geographical or emission features, 5 to 7 sectors for every sampling site are established, e.g., Scandinavia, or the centres of brown coal combustion in the former GDR. Particulary from the sectors of the former GDR, the precipitation was over-averaged contaminated anthropogenically in the years before the political change. Some components were significantly raised in comparison to other sectors. However, acidity remained on the level of the other sectors in the 80 s. In the early 90s, anthropogenic emissions were systematically reduced partly by substitution of brown coal of inferior quality, better flue gas cleaning and partly by closing down industries. The effect of such steps on the wet deposition is being studied in a national German SANA research project (SANA: scientific program of rehabilitation of the atmosphere). In this project, the sampling sites were extended to 7 while maintaining the sampling procedure and the recording of relevant meteorological input-data. As a result, there now exists a homogeneous long-term data base allowing us to study the effects of emissions on wet deposition by the rehabilitation of the atmosphere in the former GDR. The paper focusses on changes in sulphate, nitrate, calcium, acidity, chloride and potassium concentrations in precipitation at the 3 so-called long-term sites. There are conspicuous decreases of some ions on one hand, but there is also an increase of nitrate and acidity, especially in recent years.