Search Results

Now showing 1 - 10 of 19
Loading...
Thumbnail Image
Item

Design of biomimetic collagen matrices by reagent-free electron beam induced crosslinking: Structure-property relationships and cellular response

2019, Riedel, Stefanie, Hietschold, Philine, Krömmelbein, Catharina, Kunschmann, Tom, Konieczny, Robert, Knolle, Wolfgang, Mierke, Claudia T., Zink, Mareike, Mayr, Stefan G.

Novel strategies to mimic mammalian extracellular matrix (ECM) in vitro are desirable to study cell behavior, diseases and new agents in drug delivery. Even though collagen represents the major constituent of mammalian ECM, artificial collagen hydrogels with characteristic tissue properties such as network size and stiffness are difficult to design without application of chemicals which might be even cytotoxic. In our study we investigate how high energy electron induced crosslinking can be utilized to precisely tune collagen properties for ECM model systems. Constituting a minimally invasive approach, collagen residues remain intact in the course of high energy electron treatment. Quantification of the 3D pore size of the collagen network as a function of irradiation dose shows an increase in density leading to decreased pore size. Rheological measurements indicate elevated storage and loss moduli correlating with an increase in crosslinking density. In addition, cell tests show well maintained viability of NIH 3T3 cells for irradiated collagen gels indicating excellent cellular acceptance. With this, our investigations demonstrate that electron beam crosslinked collagen matrices have a high potential as precisely tunable ECM-mimetic systems with excellent cytocompatibility.

Loading...
Thumbnail Image
Item

Transparent model concrete with tunable rheology for investigating flow and particle-migration during transport in pipes

2020, Auernhammer, Günter K., Fataei, Shirin, Haustein, Martin A., Patel, Himanshu P., Schwarze, Rüdiger, Secrieru, Egor, Mechtcherine, Viktor

The article describes the adaption and properties of a model concrete for detailed flow studies. To adapt the yield stress and plastic viscosity of the model concrete to the corresponding rheological properties of real concrete, the model concrete is made of a mixture of glass beads and a non-Newtonian fluid. The refractive index of the non-Newtonian fluid is adjusted to the refractive index of the glass beads by the addition of a further constituent. The rheological properties of the model concrete are characterised by measurements in concrete rheometers. Finally, the first exemplary results from experiments with the model concrete are presented, which give incipient impressions of the complex internal dynamics in flowing concrete.

Loading...
Thumbnail Image
Item

The impact of atmospheric boundary layer, opening configuration and presence of animals on the ventilation of a cattle barn

2020, Nosek, Štěpán, Kluková, Zuzana, Jakubcová, Michaela, Yi, Qianying, Janke, David, Demeyer, Peter, Jaňour, Zbyněk

Naturally ventilated livestock buildings (NVLB) represent one of the most significant sources of ammonia emissions. However, even the dispersion of passive gas in an NVLB is still not well understood. In this paper, we present a detailed investigation of passive pollutant dispersion in a model of a cattle barn using the wind tunnel experiment method. We simulated the pollution of the barn by a ground-level planar source. We used the time-resolved particle image velocimetry (TR-PIV) and the fast flame ionisation detector (FFID) to study the flow and dispersion processes at high spatial and temporal resolution. We employed the Proper Orthogonal Decomposition (POD) and Oscillating Patterns Decomposition (OPD) methods to detect the coherent structures of the flow. The results show that the type of atmospheric boundary layer (ABL) and sidewall opening height have a significant impact on the pollutant dispersion in the barn, while the presence of animals and doors openings are insignificant under conditions of winds perpendicular to the sidewall openings. We found that the dynamic coherent structures, developed by the Kelvin-Helmholtz instability, contribute to the pollutant transport in the barn. We demonstrate that in any of the studied cases the pollutant was not well mixed within the barn and that a significant underestimation (up to by a factor 3) of the barn ventilation might be obtained using, e.g. tracer gas method. © 2020 The Authors

Loading...
Thumbnail Image
Item

Greenhouse gas emissions from broiler manure treatment options are lowest in well-managed biogas production

2020, Kreidenweis, Ulrich, Breier, Jannes, Herrmann, Christiane, Libra, Judy, Prochnow, Annette

The production of broiler meat has increased significantly in the last decades in Germany and worldwide, and is projected to increase further in the future. As the number of animals raised increases, so too does the amount of manure produced. The identification of manure treatment options that cause low greenhouse gas emissions becomes ever more important. This study compares four treatment options for broiler manure followed by field spreading: storage before distribution, composting, anaerobic digestion in a biogas plant and production of biochar. For these options potential direct and indirect greenhouse gas emissions were assessed for the situation in Germany. Previous analyses have shown that greenhouse gas balances of manure management are often strongly influenced by a small number of processes. Therefore, in this study major processes were represented with several variants and the sensitivity of model results to different management decisions and uncertain parameters was assessed. In doing so, correlations between processes were considered, in which higher emissions earlier on in the process chain reduce emissions later. The results show that biogas production from broiler manure leads to the lowest greenhouse gas emissions in most of the analysed cases, mainly due to the emission savings related to the substitution of mineral fertilizers and the production of electricity. Pyrolysis of the manure and subsequent field spreading as a soil amendment can lead to similarly low emissions due to the long residence time of the biochar, and may even be the better option than poorly managed biogas production. Composting is the treatment option resulting in highest emissions of greenhouse gases, due to high ammonia volatilization, and is likely worse than untreated storage in this respect. These results are relatively insensitive to the length of transport required for field spreading, but high uncertainties are associated with the use of emission factors.

Loading...
Thumbnail Image
Item

Influence of annealing on microstructure and mechanical properties of ultrafine-grained Ti45Nb

2019, Völker, B., Maier-Kiener, V., Werbach, K., Müller, T., Pilz, S., Calin, M., Eckert, J., Hohenwarter, A.

Beta-Ti alloys have been intensively investigated in the last years because of their favorable low Young's moduli, biocompatibility and bio-inertness, making these alloys interesting candidates for implant materials. Due to their low mechanical strength, efforts are currently devoted to increasing it. A promising way to improve the strength is to tailor the microstructure using severe plastic deformation (SPD). In this investigation high pressure torsion was used to refine the microstructure of a Ti-45wt.%Nb alloy inducing a grain size of ~50 nm. The main focus of the subsequent investigations was devoted to the thermal stability of the microstructure. Isochronal heat-treatments performed for 30 min in a temperature range up to 500 °C caused an increase of hardness with a peak value at 300 °C before the hardness decreased at higher temperatures. Simultaneously, a distinct temperature-dependent variation of the Young's modulus was also measured. Tensile tests revealed an increase in strength after annealing compared to the SPD-state. Microstructural investigations showed that annealing causes the formation of α-Ti. The findings suggest that the combination of severe plastic deformation with subsequent heat treatment provides a feasible way to improve the mechanical properties of SPD-deformed β-Ti alloys making them suitable for higher strength applications.

Loading...
Thumbnail Image
Item

Organic vapor sensing behavior of polycarbonate/polystyrene/multi-walled carbon nanotube blend composites with different microstructures

2019, Li, Yilong, Pionteck, Jürgen, Pötschke, Petra, Voit, Brigitte

With the focus on the use as leakage detectors, the vapor sensing behavior of conductive polymer composites (CPCs) based on polycarbonate/polystyrene/multi-walled carbon nanotube (PC/PS/MWCNT) blends with different blend ratios was studied as well as their morphological and electrical properties. In the melt mixed blend composites, the MWCNTs are preferentially localized in PC. At the PC/PS ratio of 70/30 wt%, the composites showed a sea-island structure, while for blends containing 40 wt% or 50 wt% PS co-continuous structures were developed resulting in a reduction in the MWCNT percolation threshold. The saturated vapors of the selected solvents have good interactions to PS but different interactions to PC. At 0.75 wt% MWCNT, sea-island CPCs showed high relative resistance change (Rrel) but poor reversibility towards moderate vapors like ethyl acetate and toluene, while CPCs with co-continuous structure exhibited lower Rrel and better reversibility. All CPCs showed poor reversibility towards vapor of the good solvent dichloromethane due to strong interactions between polymers and vapor. In the vapor of the poor solvent cyclohexane, CPCs with higher PS content showed increased Rrel. After extraction of the PS component by cyclohexane, the sensing response was decreased and the Rrel of the co-continuous blend even reached negative values.

Loading...
Thumbnail Image
Item

A new method to measure real-world respiratory tract deposition of inhaled ambient black carbon

2019, Madueño, Leizel, Kecorius, Simonas, Löndahl, Jakob, Müller, Thomas, Pfeifer, Sascha, Haudek, Andrea, Mardoñez, Valeria, Wiedensohler, Alfred

In this study, we present the development of a mobile system to measure real-world total respiratory tract deposition of inhaled ambient black carbon (BC). Such information can be used to supplement the existing knowledge on air pollution-related health effects, especially in the regions where the use of standard methods and intricate instrumentation is limited. The study is divided in two parts. Firstly, we present the design of portable system and methodology to evaluate the exhaled air BC content. We demonstrate that under real-world conditions, the proposed system exhibit negligible particle losses, and can additionally be used to determine the minute ventilation. Secondly, exemplary experimental data from the system is presented. A feasibility study was conducted in the city of La Paz, Bolivia. In a pilot experiment, we found that the cumulative total respiratory tract deposition dose over 1-h commuting trip would result in approximately 2.6 μg of BC. This is up to 5 times lower than the values obtained from conjectural approach (e.g. using physical parameters from previously reported worksheets). Measured total respiratory tract deposited BC fraction varied from 39% to 48% during walking and commuting inside a micro-bus, respectively. To the best of our knowledge, no studies focusing on experimental determination of real-world deposition dose of BC have been performed in developing regions. This can be especially important because the BC mass concentration is significant and determines a large fraction of particle mass concentration. In this work, we propose a potential method, recommendations, as well as the limitations in establishing an easy and relatively cheap way to estimate the respiratory tract deposition of BC. In this study we present a novel method to measure real-world respiratory tract deposition dose of Black Carbon. Results from a pilot study in La Paz, Bolivia, are presented. © 2019 The Authors

Loading...
Thumbnail Image
Item

Thermal annealing to influence the vapor sensing behavior of co-continuous poly(lactic acid)/polystyrene/multiwalled carbon nanotube composites

2020, Li, Yilong, Pionteck, Jürgen, Pötschke, Petra, Voit, Brigitte

With the main purpose of being used as vapor leakage detector, the volatile organic compound (VOC) vapor sensing properties of conductive polymer blend composites were studied. Poly(lactic acid)/polystyrene/multi-walled carbon nanotube (PLA/PS/MWCNT) based conductive polymer composites (CPCs) in which the polymer components exhibit different interactions with the vapors, were prepared by melt mixing. CPCs with a blend composition of 50/50 wt% resulted in the finest co-continuous structure and selective MWCNT localization in PLA. Therefore, these composites were selected for sensor tests. Thermal annealing was applied aiming to maintain the blend structure but improving the sensing reversibility of CPC sensors towards high vapor concentrations. Different sensing protocols were applied using acetone (good solvent for PS and PLA) and cyclohexane (good solvent for PS but poor solvent for PLA) vapors. Increasing acetone vapor concentration resulted in increased relative resistance change (Rrel) of CPCs. Saturated cyclohexane vapor resulted in lower response than nearly saturated acetone vapor. The thermal annealing at 150 °C did not change the blend morphology but increased the PLA crystallinity, making the CPC sensors more resistant to vapor stimulation, resulting in lower Rrel but better reversibility after vapor exposure.

Loading...
Thumbnail Image
Item

Influence of substrate dimensionality on the growth mode of epitaxial 3D-bonded GeTe thin films: From 3D to 2D growth

2019, Hilmi, Isom, Lotnyk, Andriy, Gerlach, Jürgen W., Schumacher, Philipp, Rauschenbach, Bernd

The pseudo-binary line of Sb2Te3-GeTe contains alloys featuring different crystalline characteristics from two-dimensionally (2D-) bonded Sb2Te3 to three-dimensionally (3D-) bonded GeTe. Here, the growth scenario of 3D-bonded GeTe is investigated by depositing epitaxial GeTe thin films on Si(111) and Sb2Te3-buffered Si(111) substrates using pulsed laser deposition (PLD). GeTe thin films were grown in trigonal structure within a temperature window for epitaxial growth of 210–270 °C on unbuffered Si(111) substrates. An unconventional growth onset was characterized by the formation of a thin amorphous GeTe layer. Nonetheless, the as-grown film is found to be crystalline. Furthermore, by employing a 2D-bonded Sb2Te3 thin film as a seeding layer on Si(111), a 2D growth of GeTe is harnessed. The epitaxial window can substantially be extended especially towards lower temperatures down to 145 °C. Additionally, the surface quality is significantly improved. The inspection of the local structure of the epitaxial films reveals the presence of a superposition of twinned domains, which is assumed to be an intrinsic feature of such thin films. This work might open a way for an improvement of an epitaxy of a 3D-bonded material on a highly-mismatched substrate (e.g. Si (111)) by employing a 2D-bonded seeding layer (e.g. Sb2Te3).

Loading...
Thumbnail Image
Item

Comparison of ammonia emissions related to nitrogen use efficiency of livestock production in Europe

2019, Groenestein, C.M., Hutchings, N.J., Haenel, H.D., Amon, B., Menzi, H., Mikkelsen, M.H., Misselbrook, T.H., van Bruggen, C., Kupper, T., Webb, J.

The increasing global demand for food and the environmental effects of reactive nitrogen losses in the food production chain, increase the need for efficient use of nitrogen (N). Of N harvested in agricultural plant products, 80% is used to feed livestock. Because the largest atmospheric loss of reactive nitrogen from livestock production systems is ammonia (NH3), the focus of this paper is on N lost as NH3 during the production of animal protein. The focus of this paper is to understand the key factors explaining differences in Nitrogen Use Efficiency (NUE) of animal production among various European countries. Therefore we developed a conceptual framework to describe the NUE defined as the amount of animal-protein N per N in feed and NH3–N losses in the production of milk, beef, pork, chicken meat and eggs in The Netherlands, Switzerland, United Kingdom, Germany, Austria and Denmark. The framework describes how manure management and animal-related parameters (feed, metabolism) relate to NH3 emissions and NUE. The results showed that the animal product with the lowest NUE had the largest NH3 emissions and vice versa, which agrees with the reciprocal relationship between NUE and NH3 within the conceptual framework. Across animal products for the countries considered, about 20% of the N in feed is lost as NH3. The significant smallest proportion (12%) of NH3–N per unit of Nfeed is from chicken production. The proportions for other products are 17%, 19%, 20% and 22% for milk, pork, eggs and beef respectively. These differences were not significantly different due to the differences among countries. For all countries, NUE was lowest for beef and highest for chicken. The production of 1 kg N in beef required about 5 kg N in feed, of which 1 kg N was lost as NH3–N. For the production of 1 kg N in chicken meat, 2 kg N in feed was required and 0.2 kg was lost as NH3. The production of 1 kg N in milk required 4 kg N in feed with 0.6 kg NH3–N loss, the same as pork and eggs, but those needed 3 and 3.5 kg N in feed per kg N in product respectively. Except for beef, the differences among these European countries were mainly caused by differences in manure management practices and their emission factors, rather than by animal-related factors including feed and digestibility influencing the excreted amount of ammoniacal N (TAN). For beef, both aspects caused important differences. Based on the results, we encourage the expression of N losses as per N in feed or per N in product, in addition to per animal place, when comparing production efficiency and NUE. We consider that disaggregating emission factors into a diet/animal effect and a manure management effect would improve the basis for comparing national NH3 emission inventories. © 2018 The Authors