Search Results

Now showing 1 - 2 of 2
  • Item
    The role of beliefs, expectations and values in decision-making favoring climate change adaptation—implications for communications with European forest professionals
    (Bristol : IOP Publ., 2020) Blennow, K.; Persson, J.; Gonçalves, L.M.S.; Borys, A.; Dutcă, I.; Hynynen, J.; Janeczko, E.; Lyubenova, M.; Merganič, J.; Merganičová, K.; Peltoniemi, M.; Petr, M.; Reboredo, F.; Vacchiano, G.; Reyer, C.P.O.
    Beliefs, expectations and values are often assumed to drive decisions about climate change adaptation. We tested hypotheses based on this assumption using survey responses from 508 European forest professionals in ten countries. We used the survey results to identify communication needs and the decision strategies at play, and to develop guidelines on adequate communications about climate change adaptation. We observed polarization in the positive and negative values associated with climate change impacts accepted by survey respondents. We identified a mechanism creating the polarization that we call the 'blocked belief' effect. We found that polarized values did not correlate with decisions about climate change adaptation. Strong belief in the local impacts of climate change on the forest was, however, a prerequisite of decision-making favoring adaptation. Decision-making in favor of adaptation to climate change also correlated with net values of expected specific impacts on the forest and generally increased with the absolute value of these in the absence of 'tipping point' behavior. Tipping point behavior occurs when adaptation is not pursued in spite of the strongly negative or positive net value of expected climate change impacts. We observed negative and positive tipping point behavior, mainly in SW Europe and N-NE Europe, respectively. In addition we found that advice on effective adaptation may inhibit adaptation when the receiver is aware of effective adaptation measures unless it is balanced with information explaining how climate change leads to negative impacts. Forest professionals with weak expectations of impacts require communications on climate change and its impacts on forests before any advice on adaptation measures can be effective. We develop evidence-based guidelines on communications using a new methodology which includes Bayesian machine learning modeling of the equivalent of an expected utility function for the adaptation decision problem.
  • Item
    Comparing impacts of climate change and mitigation on global agriculture by 2050
    (Bristol : IOP Publ., 2018) van Meijl, Hans; Havlik, Petr; Lotze-Campen, Hermann; Stehfest, Elke; Witzke, Peter; Pérez Domínguez, Ignacio; Bodirsky, Benjamin Leon; van Dijk, Michiel; Doelman, Jonathan; Fellmann, Thomas; Humpenöder, Florian; Koopman, Jason F. L.; Müller, Christoph; Popp, Alexander; Tabeau, Andrzej; Valin, Hugo; van Zeist, Willem-Jan
    Systematic model inter-comparison helps to narrow discrepancies in the analysis of the future impact of climate change on agricultural production. This paper presents a set of alternative scenarios by five global climate and agro-economic models. Covering integrated assessment (IMAGE), partial equilibrium (CAPRI, GLOBIOM, MAgPIE) and computable general equilibrium (MAGNET) models ensures a good coverage of biophysical and economic agricultural features. These models are harmonized with respect to basic model drivers, to assess the range of potential impacts of climate change on the agricultural sector by 2050. Moreover, they quantify the economic consequences of stringent global emission mitigation efforts, such as non-CO2 emission taxes and land-based mitigation options, to stabilize global warming at 2 °C by the end of the century under different Shared Socioeconomic Pathways. A key contribution of the paper is a vis-à-vis comparison of climate change impacts relative to the impact of mitigation measures. In addition, our scenario design allows assessing the impact of the residual climate change on the mitigation challenge. From a global perspective, the impact of climate change on agricultural production by mid-century is negative but small. A larger negative effect on agricultural production, most pronounced for ruminant meat production, is observed when emission mitigation measures compliant with a 2 °C target are put in place. Our results indicate that a mitigation strategy that embeds residual climate change effects (RCP2.6) has a negative impact on global agricultural production relative to a no-mitigation strategy with stronger climate impacts (RCP6.0). However, this is partially due to the limited impact of the climate change scenarios by 2050. The magnitude of price changes is different amongst models due to methodological differences. Further research to achieve a better harmonization is needed, especially regarding endogenous food and feed demand, including substitution across individual commodities, and endogenous technological change.