Search Results

Now showing 1 - 10 of 92
  • Item
    Long-time resistivity monitoring of a freshwater/saltwater transition zone using the vertical electrode system SAMOS
    (Les Ulis : EDP Sciences, 2018) Grinat, Michael; Epping, Dieter; Meyer, Robert; Szymkiewicz, Adam; Sadurski, A.; Jaworska-Szulc, B.
    In September 2009 two newly developed vertical electrode systems were installed in boreholes in the water catchment areas Waterdelle and Ostland at the North Sea island Borkum to monitor possible changes of the transition zone between the freshwater lens and the underlying saltwater. The vertical electrode systems, which were both installed between 44 m and 65 m below ground level, are used for geoelectrical multi-electrode measurements carried out automatically several times per day; the measurements are still ongoing. The whole system consisting of a vertical electrode system in a borehole and the measuring unit at ground level is called SAMOS (Saltwater Monitoring System). At both locations the data show a clear resistivity decrease that indicates the transition zone between freshwater and saltwater. The depth of the transition zone as well as the kind of resistivity decrease is very stable since 2010. Temporal changes are visible if single depths are considered. In 2015 Miriam Ibenthal used a vertical 2D density-dependent groundwater flow model to explain the long-term resistivity measurements and showed that the temporal changes at CLIWAT 2 (Ostland) could be explained by variations of the groundwater level, changing groundwater recharge rates and changing pumping rates of the nearby located drinking water supply wells.
  • Item
    Saltwater intrusion under climate change in North-Western Germany - mapping, modelling and management approaches in the projects TOPSOIL and go-CAM
    (Les Ulis : EDP Sciences, 2018) Wiederhold, Helga; Scheer, Wolfgang; Kirsch, Reinhard; Azizur Rahman, M.; Ronczka, Mathias; Szymkiewicz, Adam; Sadurski, A.; Jaworska-Szulc, B.
    Climate change will result in rising sea level and, at least for the North Sea region, in rising groundwater table. This leads to a new balance at the fresh–saline groundwater boundary and a new distribution of saltwater intrusions with strong regional differentiations. These effects are investigated in several research projects funded by the European Union and the German Federal Ministry of Education and Research (BMBF). Objectives and some results from the projects TOPSOIL and go-CAM are presented in this poster.
  • Item
    Las Pailas geothermal field - Central America case study: Deciphering a volcanic geothermal play type through the combination of optimized geophysical exploration methods and classic geological conceptual models of volcano-tectonic systems
    (London [u.a.] : Institute of Physics, 2019) Salguero, Leonardo Solís; Rioseco, Ernesto Meneses
    Sustainable exploitation strategies of high-enthalpy geothermal reservoirs in a volcanic geothermal play type require an accurate understanding of key geological structures such as faults, cap rock and caldera boundaries. Of same importance is the recognition of possible magmatic body intrusions and their morphology, whether they are tabular like dikes, layered like sills or domes. The relative value of those magmatic bodies, their age, shape and location rely on the role they play as possible local heat sources, hydraulic barriers between reservoir compartments, and their far-reaching effect on the geochemistry and dynamics of fluids. Obtaining detailed knowledge and a more complete understanding at the early stages of exploration through integrated geological, geophysical and geochemical methods is essential to determine promising geothermal drilling targets for optimized production/re-injection schemes and for the development of adequate exploitation programs. Valuable, extensive geophysical data gathered at Las Pailas high-enthalpy geothermal field at northwestern Costa Rica combined with detailed understanding of the geological structures in the underground may represent a sound basis for an in-depth geoscientific discussion on this topic. Currently, the German cooperation for the identification of geothermal resources in Central America, implemented by the Federal Institute for Geosciences and Natural Resources (BGR), supports an international and interdisciplinary effort, driven by the Instituto Costarricense de Electricidad (ICE) with different international and national research institutions, including the Leibniz Institute for Applied Geophysics (LIAG). The discussions and joint studies refer to the optimized utilization of geophysical and geological methods for geothermal exploration in the Central American region, using the example of Las Pailas Geothermal Field. The results should contribute to a better understanding of the most appropriate geothermal exploration concepts for complex volcanic field settings in Central America.
  • Item
    Ambient noise analysis for characterizing sub-surface dynamic parameters
    (London [u.a.] : Institute of Physics, 2020) Setiawan, B.; Saidi, T.; Yuliannur, A.; Polom, U.; Ramadhansyah, P.J.; Ali, M.I.
    Ambient noise analysis of horizontal to vertical spectral ratio (HVSR) method has been used widely to provide reliable estimates of the site fundamental frequency and to constrain the inversion of near-surface shear wave velocity. The present paper focuses on the site measurement using the aforementioned analysis by means of the HVSR method for characterizing sub-surface dynamic parameters in the City of Banda Aceh, Indonesia. A Guralp CMG-6TD broadband seismometer was used in this study to cover a wide frequency range from 0.033 Hz to 50 Hz in standard operation. The instrument was deployed at two different sites (i.e. Location#1 of Blang Padang and Location#2 of Stadion Dirmutala) in the City of Banda Aceh for at least 2 hours for ambient noise recording. This continuous of 2 hours' microtremor time series was separated into 30 minutes record from which the site fundamental frequency and shear wave velocity of the measured site were deduced. The later sub-surface dynamic parameter was validated using another technique of reflection seismic. This investigation suggests the fundamental frequency of 0.45 Hz at Location#1 and of 0.65 Hz at Location#2. The estimated shear wave velocity of the top 30 m, Vs,30 of this investigation is 165 m/s at Location#1 and 156 m/s at Location#2. Both the site fundamental frequency and shear wave velocity are important for infrastructure design in the high seismic region of Banda Aceh, Indonesia.
  • Item
    Modeling saltwater intrusion scenarios for a coastal aquifer at the German North Sea
    (Les Ulis : EDP Sciences, 2018) Schneider, A.; Zhao, H.; Wolf, J.; Logashenko, D.; Reiter, S.; Howahr, M.; Eley, M.; Gelleszun, M.; Wiederhold, H.; Szymkiewicz, Adam; Sadurski, A.; Jaworska-Szulc, B.
    A 3d regional density-driven flow model of a heterogeneous aquifer system at the German North Sea Coast is set up within the joint project NAWAK (“Development of sustainable adaption strategies for the water supply and distribution infrastructure on condition of climatic and demographic change”). The development of the freshwater-saltwater interface is simulated for three climate and demographic scenarios. Groundwater flow simulations are performed with the finite volume code d3f++ (distributed density driven flow) that has been developed with a view to the modelling of large, complex, strongly density-influenced aquifer systems over long time periods.
  • Item
    Characterization of a regional coastal zone aquifer using an interdisciplinary approach – an example from Weser-Elbe region, Lower Saxony, Germany
    (Les Ulis : EDP Sciences, 2018) Rahman, Mohammad Azizur; González, Eva; Wiederhold, Helga; Deus, Nico; Elbracht, Jörg; Siemon, Bernhard; Szymkiewicz, Adam; Sadurski, A.; Jaworska-Szulc, B.
    In this study, interdisciplinary approaches are considered to characterize the coastal zone aquifer of the Elbe-Weser region in the North of Lower Saxony, Germany. Geological, hydrogeological, geochemical and geophysical information have been considered to analyze the current status of the aquifers. All the information collectively states that the salinity distribution in the subsurface is heterogeneous both horizontally and vertically. Early age flooding also contributed to this heterogeneity. No general classification of groundwater quality (according to some piper diagrams) could be identified. Helicopter-borne electro-magnetic data clearly show the presence of freshwater reserves below the sea near the west coast. Groundwater recharge largely happens in the moraine ridges (west side of the area) where both the surface elevation and the groundwater level are high. Consequently, submarine groundwater discharge occurs from the same place. All these information will facilitate to develop the planned density driven groundwater flow and transport model for the study area.
  • Item
    Chronostratigraphy of silt-dominated Pleistocene periglacial slope deposits on Mt. Ślęża (SW, Poland): Palaeoenvironmental and pedogenic significance
    (New York, NY [u.a.] : Elsevier, 2020) Waroszewski, Jaroslaw; Sprafke, Tobias; Kabala, Cezary; Musztyfaga, Elżbieta; Kot, Aleksandra; Tsukamoto, Sumiko; Frechen, Manfred
    Slope deposits with aeolian silt admixture are a widespread parent material of soils in the temperate zone but may be neglected when rates of soil production are quantified. The concept of periglacial cover beds differentiates slope deposits with or without aeolian silt admixture; yet there is a remaining debate on processes and the timing of their formation. A previous study done by us at Mt. Ślęża, SW Poland, concluded that slope deposits with variable aeolian silt admixture, or its lack, have a significant influence on the pathway of soil formation. The present work builds upon this finding, by adding further granulometric and micromorphological data from three representative profiles along a toposequence, in order to refine our understanding of local slope deposits and soil formation. Additionally, seven numerical ages using luminescence dating provide a chronological framework for our reconstructions and allow linking the forming processes of these pedosedimentary records to regional palaeoenvironmental conditions. The oldest aeolian deposits are of Middle Pleistocene age (>280 ± 19 ka) with interlayered palaeosol (marine isotope stage [MIS] 9 or older). Late Pleistocene slope deposits encompass the maximum loess thickness and are dated to MIS 2. Luminescence ages from the upper layers indicate shallow reworking, which we tentatively correlate to the Younger Dryas (YD). Two profiles with thick loess mantles have strong clay illuviation features, presumably formed during the Holocene. However, weak clay illuviation in the third profile with a thin loess mantle (having an age of YD) over granite regolith seems to have occurred before the Holocene, as only fragmented clay coatings (probably MIS 2 pedogenesis) could be found. © 2020 The Authors
  • Item
    Copper-iron bimetal ion-exchanged sapo-34 for NH3-scr of NOx
    (Basel : MDPI, 2020) Doan, Tuan; Dam, Phong; Nguyen, Khang; Vuong, Thanh Huyen; Le, Minh Thang; Pham, Thanh Huyen
    SAPO-34 was prepared with a mixture of three templates containing triethylamine, tetraethylammonium hydroxide, and morpholine, which leads to unique properties for support and production cost reduction. Meanwhile, Cu/SAPO-34, Fe/SAPO-34, and Cu-Fe/SAPO-34 were prepared through the ion-exchanged method in aqueous solution and used for selective catalytic reduction (SCR) of NOx with NH3. The physical structure and original crystal of SAPO-34 are maintained in the catalysts. Cu-Fe/SAPO-34 catalysts exhibit high NOx conversion in a broad temperature window, even in the presence of H2O. The physicochemical properties of synthesized samples were further characterized by various methods, including XRD, FE-SEM, EDS, N2 adsorption-desorption isotherms, UV-Vis-DRS spectroscopy, NH3-TPD, H2-TPR, and EPR. The best catalyst, 3Cu-1Fe/SAPO-34 exhibited high NOx conversion (> 90%) in a wide temperature window of 250–600 °C, even in the presence of H2O. In comparison with mono-metallic samples, the 3Cu-1Fe/SAPO-34 catalyst had more isolated Cu2+ ions and additional oligomeric Fe3+ active sites, which mainly contributed to the higher capacity of NH3 and NOx adsorption by the enhancement of the number of acid sites as well as its greater reducibility. Therefore, this synergistic effect between iron and copper in the 3Cu-1Fe/SAPO-34 catalyst prompted higher catalytic performance in more extensive temperature as well as hydrothermal stability after iron incorporation. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Two-Phase Fluid Flow Experiments Monitored by NMR
    (Les Ulis : EDP Sciences, 2020) Hiller, Thomas; Hoder, Gabriel; Amann-Hildenbrand, Alexandra; Klitzsch, Norbert; Schleifer, Norbert
    We present a newly developed high-pressure nuclear magnetic resonance (NMR) flow cell, which allows for the simultaneous determination of water saturation, effective gas permeability and NMR relaxation time distribution in two-phase fluid flow experiments. We introduce both the experimental setup and the experimental procedure on a tight Rotliegend sandstone sample. The initially fully water saturated sample is systematically drained by a stepwise increase of gas (Nitrogen) inlet pressure and the drainage process is continuously monitored by low field NMR relaxation measurements. After correction of the data for temperature fluctuations, the monitored changes in water saturation proved very accurate. The experimental procedure provides quantitative information about the total water saturation as well as about its distribution within the pore space at defined differential pressure conditions. Furthermore, the relationship between water saturation and relative (or effective) apparent permeability is directly determined. © The Authors, published by EDP Sciences, 2020.
  • Item
    The Cyclostratigraphy Intercomparison Project (CIP): consistency, merits and pitfalls
    (Amsterdam [u.a.] : Elsevier, 2019) Sinnesael, Matthias; De Vleeschouwer, David; Zeeden, Christian; Batenburg, Sietske J.; Da Silva, Anne-Christine; de Winter, Niels J.; Dinarès-Turell, Jaume; Drury, Anna Joy; Gambacorta, Gabriele; Hilgen, Frederik J.; Hinnov, Linda A.; Hudson, Alexander J.L.; Kemp, David B.; Lantink, Margriet L.; Laurin, Jiří; Li, Mingsong; Liebrand, Diederik; Ma, Chao; Meyers, Stephen R.; Monkenbusch, Johannes; Montanari, Alessandro; Nohl, Theresa; Pälike, Heiko; Pas, Damien; Ruhl, Micha; Thibault, Nicolas; Vahlenkamp, Maximilian; Valero, Luis; Wouters, Sébastien; Wu, Huaichun; Claeys, Philippe
    Cyclostratigraphy is an important tool for understanding astronomical climate forcing and reading geological time in sedimentary sequences, provided that an imprint of insolation variations caused by Earth’s orbital eccentricity, obliquity and/or precession is preserved (Milankovitch forcing). Numerous stratigraphic and paleoclimate studies have applied cyclostratigraphy, but the robustness of the methodology and its dependence on the investigator have not been systematically evaluated. We developed the Cyclostratigraphy Intercomparison Project (CIP) to assess the robustness of cyclostratigraphic methods using an experimental design of three artificial cyclostratigraphic case studies with known input parameters. Each case study is designed to address specific challenges that are relevant to cyclostratigraphy. Case 1 represents an offshore research vessel environment, as only a drill-core photo and the approximate position of a late Miocene stage boundary are available for analysis. In Case 2, the Pleistocene proxy record displays clear nonlinear cyclical patterns and the interpretation is complicated by the presence of a hiatus. Case 3 represents a Late Devonian proxy record with a low signal-to-noise ratio with no specific theoretical astronomical solution available for this age. Each case was analyzed by a test group of 17-20 participants, with varying experience levels, methodological preferences and dedicated analysis time. During the CIP 2018 meeting in Brussels, Belgium, the ensuing analyses and discussion demonstrated that most participants did not arrive at a perfect solution, which may be partly explained by the limited amount of time spent on the exercises (∼4.5 hours per case). However, in all three cases, the median solution of all submitted analyses accurately approached the correct result and several participants obtained the exact correct answers. Interestingly, systematically better performances were obtained for cases that represented the data type and stratigraphic age that were closest to the individual participants’ experience. This experiment demonstrates that cyclostratigraphy is a powerful tool for deciphering time in sedimentary successions and, importantly, that it is a trainable skill. Finally, we emphasize the importance of an integrated stratigraphic approach and provide flexible guidelines on what good practices in cyclostratigraphy should include. Our case studies provide valuable insight into current common practices in cyclostratigraphy, their potential merits and pitfalls. Our work does not provide a quantitative measure of reliability and uncertainty of cyclostratigraphy, but rather constitutes a starting point for further discussions on how to move the maturing field of cyclostratigraphy forward.