Search Results

Now showing 1 - 9 of 9
  • Item
    Assessment of climate change impacts on water resources in three representative ukrainian catchments using eco-hydrological modelling
    (Basel : MDPI AG, 2017) Didovets, I.; Lobanova, A.; Bronstert, A.; Snizhko, S.; Maule, C.F.; Krysanova, V.
    The information about climate change impact on river discharge is vitally important for planning adaptation measures. The future changes can affect different water-related sectors. The main goal of this study was to investigate the potential water resource changes in Ukraine, focusing on three mesoscale river catchments (Teteriv, UpperWestern Bug, and Samara) characteristic for different geographical zones. The catchment scale watershed model-Soil and Water Integrated Model (SWIM)-was setup, calibrated, and validated for the three catchments under consideration. A set of seven GCM-RCM (General Circulation Model-Regional Climate Model) coupled climate scenarios corresponding to RCPs (Representative Concentration Pathways) 4.5 and 8.5 were used to drive the hydrological catchment model. The climate projections, used in the study, were considered as three combinations of low, intermediate, and high end scenarios. Our results indicate the shifts in the seasonal distribution of runoff in all three catchments. The spring high flow occurs earlier as a result of temperature increases and earlier snowmelt. The fairly robust trend is an increase in river discharge in the winter season, and most of the scenarios show a potential decrease in river discharge in the spring.
  • Item
    Climate change, agriculture, and economic development in Ethiopia
    (Basel : MDPI AG, 2018) Yalew, A.W.; Hirte, G.; Lotze-Campen, H.; Tscharaktschiew, S.
    Quantifying the economic effects of climate change is a crucial step for planning adaptation in developing countries. This study assesses the economy-wide and regional effects of climate change-induced productivity and labor supply shocks in Ethiopian agriculture. We pursue a structural approach that blends biophysical and economic models. We consider different crop yield projections and add a regionalization to the country-wide CGE results. The study shows, in the worst case scenario, the effects on country-wide GDP may add up to -8%. The effects on regional value-added GDP are uneven and range from -10% to +2.5%. However, plausible cost-free exogenous structural change scenarios in labor skills and marketing margins may offset about 20-30% of these general equilibrium effects. As such, the ongoing structural transformation in the country may underpin the resilience of the economy to climate change. This can be regarded as a co-benefit of structural change in the country. Nevertheless, given the role of the sector in the current economic structure and the potency of the projected biophysical impacts, adaptation in agriculture is imperative. Otherwise, climate change may make rural livelihoods unpredictable and strain the country's economic progress.
  • Item
    Characterizing half-a-degree difference: a review of methods for identifying regional climate responses to global warming targets
    (Hoboken, NJ : Blackwell Publishing Ltd, 2017) James, R.; Washington, R.; Schleussner, C.-F.; Rogelj, J.; Conway, D.
    The Paris Agreement long-term global temperature goal refers to two global warming levels: well below 2°C and 1.5°C above preindustrial. Regional climate signals at specific global warming levels, and especially the differences between 1.5°C and 2°C, are not well constrained, however. In particular, methodological challenges related to the assessment of such differences have received limited attention. This article reviews alternative approaches for identifying regional climate signals associated with global temperature limits, and evaluates the extent to which they constitute a sound basis for impacts analysis. Four methods are outlined, including comparing data from different greenhouse gas scenarios, sub-selecting climate models based on global temperature response, pattern scaling, and extracting anomalies at the time of each global temperature increment. These methods have rarely been applied to compare 2°C with 1.5°C, but some demonstrate potential avenues for useful research. Nevertheless, there are methodological challenges associated with the use of existing climate model experiments, which are generally designed to model responses to different levels of greenhouse gas forcing, rather than to model climate responses to a specific level of forcing that targets a given level of global temperature change. Novel approaches may be required to address policy questions, in particular: to differentiate between half degree warming increments while accounting for different sources of uncertainty; to examine mechanisms of regional climate change including the potential for nonlinear responses; and to explore the relevance of time-lagged processes in the climate system and declining emissions, and the resulting sensitivity to alternative mitigation pathways. WIREs Clim Change 2017, 8:e457. doi: 10.1002/wcc.457. For further resources related to this article, please visit the WIREs website.
  • Item
    The challenges of applying planetary boundaries as a basis for strategic decision-making in companies with global supply chains
    (Basel : MDPI AG, 2017) Clift, R.; Sim, S.; King, H.; Chenoweth, J.L.; Christie, I.; Clavreul, J.; Mueller, C.; Posthuma, L.; Boulay, A.-M.; Chaplin-Kramer, R.; Chatterton, J.; DeClerck, F.; Druckman, A.; France, C.; Franco, A.; Gerten, D.; Goedkoop, M.; Hauschild, M.Z.; Huijbregts, M.A.J.; Koellner, T.; Lambin, E.F.; Lee, J.; Mair, S.; Marshall, S.; McLachlan, M.S.; Milà i Canals, L.; Mitchell, C.; Price, E.; Rockström, J.; Suckling, J.; Murphy, R.
    The Planetary Boundaries (PB) framework represents a significant advance in specifying the ecological constraints on human development. However, to enable decision-makers in business and public policy to respect these constraints in strategic planning, the PB framework needs to be developed to generate practical tools. With this objective in mind, we analyse the recent literature and highlight three major scientific and technical challenges in operationalizing the PB approach in decision-making: first, identification of thresholds or boundaries with associated metrics for different geographical scales; second, the need to frame approaches to allocate fair shares in the 'safe operating space' bounded by the PBs across the value chain and; third, the need for international bodies to co-ordinate the implementation of the measures needed to respect the Planetary Boundaries. For the first two of these challenges, we consider how they might be addressed for four PBs: climate change, freshwater use, biosphere integrity and chemical pollution and other novel entities. Four key opportunities are identified: (1) development of a common system of metrics that can be applied consistently at and across different scales; (2) setting 'distance from boundary' measures that can be applied at different scales; (3) development of global, preferably open-source, databases and models; and (4) advancing understanding of the interactions between the different PBs. Addressing the scientific and technical challenges in operationalizing the planetary boundaries needs be complemented with progress in addressing the equity and ethical issues in allocating the safe operating space between companies and sectors.
  • Item
    Governance Strategies for Improving Flood Resilience in the Face of Climate Change
    (Basel : MDPI, 2018) Driessen, Peter P. J.; Hegger, Dries L. T.; Kundzewicz, Zbigniew W.; van Rijswick, Helena F. M. W.; Crabbé, Ann; Larrue, Corinne; Matczak, Piotr; Pettersson, Maria; Priest, Sally; Suykens, Cathy; Raadgever, Gerrit Thomas; Wiering, Mark
    Flooding is the most common of all natural disasters and accounts for large numbers of casualties and a high amount of economic damage worldwide. To be ‘flood resilient’, countries should have sufficient capacity to resist, the capacity to absorb and recover, and the capacity to transform and adapt. Based on international comparative research, we conclude that six key governance strategies will enhance ‘flood resilience’ and will secure the necessary capacities. These strategies pertain to: (i) the diversification of flood risk management approaches; (ii) the alignment of flood risk management approaches to overcome fragmentation; (iii) the involvement, cooperation, and alignment of both public and private actors in flood risk management; (iv) the presence of adequate formal rules that balance legal certainty and flexibility; (v) the assurance of sufficient financial and other types of resources; (vi) the adoption of normative principles that adequately deal with distributional effects. These governance strategies appear to be relevant across different physical and institutional contexts. The findings may also hold valuable lessons for the governance of climate adaptation more generally.
  • Item
    ICDP workshop on scientific drilling of Nam Co on the Tibetan Plateau: 1 million years of paleoenvironmental history, geomicrobiology, tectonics and paleomagnetism derived from sediments of a high-altitude lake
    (Sapporo : IODP, 2019) Haberzettl, Torsten; Daut, Gerhard; Schulze, Nora; Spiess, Volkhard; Wang, Junbo; Zhu, Liping
    The Tibetan Plateau is of peculiar societal relevance as it provides freshwater from the so-called “Water Tower of Asia” to a large portion of the Asian population. However, future climate change will affect the hydrological cycle in this area. To define parameters for future climate change scenarios it is necessary to improve the knowledge about thresholds, timing, pace and intensity of past climatic changes and associated environmental impacts. Sedimentary archives reaching far back in time and spanning several glacial–interglacial cycles such as Nam Co provide the unique possibility to extract such information. In order to explore the scientific opportunities that an ICDP drilling effort at Nam Co would provide, 40 scientists from 13 countries representing various scientific disciplines met in Beijing from 22 to 24 May 2018. Besides paleoclimatic investigations, opportunities for paleomagnetic, deep biosphere, tectonic and paleobiological studies were discussed. After having explored the technical and logistical challenges and the scientific opportunities all participants agreed on the great value and need to drill this extraordinary archive, which has a sediment thickness of more than 1 km, likely covering more than 1 Ma.
  • Item
    Hydro-Economic Modelling for Water-Policy Assessment Under Climate Change at a River Basin Scale: A Review
    (Basel : MDPI, 2020) Expósito, Alfonso; Beier, Felicitas; Berbel, Julio
    Hydro-economic models (HEMs) constitute useful instruments to assess water-resource management and inform water policy. In the last decade, HEMs have achieved significant advances regarding the assessment of the impacts of water-policy instruments at a river basin or catchment level in the context of climate change (CC). This paper offers an overview of the alternative approaches used in river-basin hydro-economic modelling to address water-resource management issues and CC during the past decade. Additionally, it analyses how uncertainty and risk factors of global CC have been treated in recent HEMs, offering a discussion on these last advances. As the main conclusion, current challenges in the realm of hydro-economic modelling include the representation of the food-energy-water nexus, the successful representation of micro-macro linkages and feedback loops between the socio-economic model components and the physical side, and the treatment of CC uncertainties and risks in the analysis.
  • Item
    ICDP workshop on the Lake Tanganyika Scientific Drilling Project: a late Miocene–present record of climate, rifting, and ecosystem evolution from the world's oldest tropical lake
    (Sapporo : IODP, 2020) Russell, James M.; Barker, Philip; Cohen, Andrew; Ivory, Sarah; Kimirei, Ishmael; Lane, Christine; Leng, Melanie; Maganza, Neema; McGlue, Michael; Msaky, Emma; Noren, Anders; Park Boush, Lisa; Salzburger, Walter; Scholz, Christopher; Tiedemann, Ralph; Nuru, Shaidu
    The Neogene and Quaternary are characterized by enormous changes in global climate and environments, including global cooling and the establishment of northern high-latitude glaciers. These changes reshaped global ecosystems, including the emergence of tropical dry forests and savannahs that are found in Africa today, which in turn may have influenced the evolution of humans and their ancestors. However, despite decades of research we lack long, continuous, well-resolved records of tropical climate, ecosystem changes, and surface processes necessary to understand their interactions and influences on evolutionary processes. Lake Tanganyika, Africa, contains the most continuous, long continental climate record from the mid-Miocene (∼10 Ma) to the present anywhere in the tropics and has long been recognized as a top-priority site for scientific drilling. The lake is surrounded by the Miombo woodlands, part of the largest dry tropical biome on Earth. Lake Tanganyika also harbors incredibly diverse endemic biota and an entirely unexplored deep microbial biosphere, and it provides textbook examples of rift segmentation, fault behavior, and associated surface processes. To evaluate the interdisciplinary scientific opportunities that an ICDP drilling program at Lake Tanganyika could offer, more than 70 scientists representing 12 countries and a variety of scientific disciplines met in Dar es Salaam, Tanzania, in June 2019. The team developed key research objectives in basin evolution, source-to-sink sedimentology, organismal evolution, geomicrobiology, paleoclimatology, paleolimnology, terrestrial paleoecology, paleoanthropology, and geochronology to be addressed through scientific drilling on Lake Tanganyika. They also identified drilling targets and strategies, logistical challenges, and education and capacity building programs to be carried out through the project. Participants concluded that a drilling program at Lake Tanganyika would produce the first continuous Miocene–present record from the tropics, transforming our understanding of global environmental change, the environmental context of human origins in Africa, and providing a detailed window into the dynamics, tempo and mode of biological diversification and adaptive radiations.
  • Item
    Effect of climate change on hydrology, sediment and nutrient losses in two lowland catchments in Poland
    (Basel : MDPI AG, 2017) Marcinkowski, P.; Piniewski, M.; Kardel, I.; Szcześniak, M.; Benestad, R.; Srinivasan, R.; Ignar, S.; Okruszko, T.
    Future climate change is projected to have significant impact on water resources availability and quality in many parts of the world. The objective of this paper is to assess the effect of projected climate change on water quantity and quality in two lowland catchments (the Upper Narew and the Barycz) in Poland in two future periods (near future: 2021-2050, and far future: 2071-2100). The hydrological model SWAT was driven by climate forcing data from an ensemble of nine bias-corrected General Circulation Models-Regional Climate Models (GCM-RCM) runs based on the Coordinated Downscaling Experiment-European Domain (EURO-CORDEX). Hydrological response to climate warming and wetter conditions (particularly in winter and spring) in both catchments includes: lower snowmelt, increased percolation and baseflow and higher runoff. Seasonal differences in the response between catchments can be explained by their properties (e.g., different thermal conditions and soil permeability). Projections suggest only moderate increases in sediment loss, occurring mainly in summer and winter. A sharper increase is projected in both catchments for TN losses, especially in the Barycz catchment characterized by a more intensive agriculture. The signal of change in annual TP losses is blurred by climate model uncertainty in the Barycz catchment, whereas a weak and uncertain increase is projected in the Upper Narew catchment.