Search Results

Now showing 1 - 9 of 9
  • Item
    Effects of Drought and Heat on Photosynthetic Performance, Water Use and Yield of Two Selected Fiber Hemp Cultivars at a Poor-Soil Site in Brandenburg (Germany)
    (Basel : MDPI, 2020) Herppich, Werner B.; Gusovius, Hans-Jörg; Flemming, Inken; Drastig, Katrin
    Hemp currently regains certain importance as fiber, oil and medical crop not least because of its modest requirements of biocides, fertilizer and water. During recent years, crops were exposed to a combination of drought and heat, even in northern Central-Europe. Dynamic responses of photosynthesis and stomatal conductance to these stresses and their persistent effects had been studied, if at all, in controlled environment experiments. Comprehensive field studies on diurnal and long-term net photosynthesis and gas exchange, and yield properties of hemp during a drought prone, high-temperature season in northern Central-Europe are obviously missing. Thus, in whole season field trails, the essential actual physiological (rates of net photosynthesis and transpiration, stomatal conductance, water use efficiencies, ambient and internal CO2 concentrations) and the yield performance of modern high-yielding multi-purpose hemp cultivars, ‘Ivory’ and ‘Santhica 27’, were evaluated under extreme environmental conditions and highly limited soil water supply. This provides comprehensive information on the usability of these cultivars under potential future harsh production conditions. Plants of both cultivars differentially cope with the prevailing climatic and soil water conditions. While ‘Ivory’ plants developed high rates of CO2 gain and established large leaf area per plant in the mid-season, those of ‘Santhica 27’ utilized lower CO2 uptake rates at lower leaf area per plant most time. This and the higher germination success of ‘Santhica 27’ resulted in nearly twice the yield compared to ‘Ivory’. Although stomatal control of CO2 gain was pronounced in both cultivars, higher stomatal limitations in ‘Ivory’ plants resulted in higher overall intrinsic water use efficiency. Cultivation of both hemp cultivars with only basic irrigation during seed germination was successful and without large effects on yield and quality. This was valid even under extremely hot and dry climatic conditions in northern Central Europe.
  • Item
    Near Real-Time Biophysical Rice (Oryza sativa L.) Yield Estimation to Support Crop Insurance Implementation in India
    (Basel : MDPI, 2020) Arumugam, Ponraj; Chemura, Abel; Schauberger, Bernhard; Gornott, Christoph
    Immediate yield loss information is required to trigger crop insurance payouts, which are important to secure agricultural income stability for millions of smallholder farmers. Techniques for monitoring crop growth in real-time and at 5 km spatial resolution may also aid in designing price interventions or storage strategies for domestic production. In India, the current government-backed PMFBY (Pradhan Mantri Fasal Bima Yojana) insurance scheme is seeking such technologies to enable cost-efficient insurance premiums for Indian farmers. In this study, we used the Decision Support System for Agrotechnology Transfer (DSSAT) to estimate yield and yield anomalies at 5 km spatial resolution for Kharif rice (Oryza sativa L.) over India between 2001 and 2017. We calibrated the model using publicly available data: namely, gridded weather data, nutrient applications, sowing dates, crop mask, irrigation information, and genetic coefficients of staple varieties. The model performance over the model calibration years (2001–2015) was exceptionally good, with 13 of 15 years achieving more than 0.7 correlation coefficient (r), and more than half of the years with above 0.75 correlation with observed yields. Around 52% (67%) of the districts obtained a relative Root Mean Square Error (rRMSE) of less than 20% (25%) after calibration in the major rice-growing districts (>25% area under cultivation). An out-of-sample validation of the calibrated model in Kharif seasons 2016 and 2017 resulted in differences between state-wise observed and simulated yield anomalies from –16% to 20%. Overall, the good ability of the model in the simulations of rice yield indicates that the model is applicable in selected states of India, and its outputs are useful as a yield loss assessment index for the crop insurance scheme PMFBY.
  • Item
    Incorporating Biodiversity into Biogeochemistry Models to Improve Prediction of Ecosystem Services in Temperate Grasslands: Review and Roadmap
    (Basel : MDPI, 2020) Van Oijen, Marcel; Barcza, Zoltán; Confalonieri, Roberto; Korhonen, Panu; Kröel-Dulay, György; Lellei-Kovács, Eszter; Louarn, Gaëtan; Louault, Frédérique; Martin, Raphaël; Moulin, Thibault; Movedi, Ermes; Picon-Cochard, Catherine; Rolinski, Susanne; Viovy, Nicolas; Wirth, Stephen Björn; Bellocchi, Gianni
    Multi-species grasslands are reservoirs of biodiversity and provide multiple ecosystem services, including fodder production and carbon sequestration. The provision of these services depends on the control exerted on the biogeochemistry and plant diversity of the system by the interplay of biotic and abiotic factors, e.g., grazing or mowing intensity. Biogeochemical models incorporate a mechanistic view of the functioning of grasslands and provide a sound basis for studying the underlying processes. However, in these models, the simulation of biogeochemical cycles is generally not coupled to simulation of plant species dynamics, which leads to considerable uncertainty about the quality of predictions. Ecological models, on the other hand, do account for biodiversity with approaches adopted from plant demography, but without linking the dynamics of plant species to the biogeochemical processes occurring at the community level, and this hampers the models’ capacity to assess resilience against abiotic stresses such as drought and nutrient limitation. While setting out the state-of-the-art developments of biogeochemical and ecological modelling, we explore and highlight the role of plant diversity in the regulation of the ecosystem processes underlying the ecosystems services provided by multi-species grasslands. An extensive literature and model survey was carried out with an emphasis on technically advanced models reconciling biogeochemistry and biodiversity, which are readily applicable to managed grasslands in temperate latitudes. We propose a roadmap of promising developments in modelling.
  • Item
    Carbon Budget of an Agroforestry System after Being Converted from a Poplar Short Rotation Coppice
    (Basel : MDPI, 2020) Pecchioni, Giovanni; Bosco, Simona; Volpi, Iride; Mantino, Alberto; Dragoni, Federico; Giannini, Vittoria; Tozzini, Cristiano; Mele, Marcello; Ragaglini, Giorgio
    Poplar (Populus L. spp.) Short Rotation Coppice systems (SRCs) for bioenergy production are being converted back to arable land. Transitioning to Alley Cropping Systems (ACSs) could be a suitable strategy for integrating former tree rows and arable crops. A field trial (Pisa, Central Italy) was set up with the aim of assessing the C storage of an ACS system based on hybrid poplar and sorghum (Sorghum bicolor L. Moench) and comparing it with that of an SRC cultivation system. The carbon budget at the agroecosystem scale was assessed in the first year of the transition using the net biome production (NBP) approach with a simplified method. The overall NBP for the SRC was positive (96 ± 40 g C m−2 year−1), highlighting that the system was a net carbon sink (i.e., NBP > 0). However, the ACS registered a net C loss (i.e., NBP < 0), since the NBP was −93 ± 56 g C m−2 year−1. In the first year of the transition, converting the SRC into an ACS counteracted the potential beneficial effect of C storage in tree belowground biomass due to the high heterotrophic respiration rate recorded in the ACS, which was fostered by the incorporation of residues and tillage disturbance in the alley. Additional years of heterotrophic respiration measurements could allow for an estimate of the speed and extent of C losses.
  • Item
    Hydrothermal Carbonization and Pyrolysis of Sewage Sludge: Effects on Lolium perenne Germination and Growth
    (Basel : MDPI, 2019) Paneque, Marina; Knicker, Heike; Kern, Jürgen; De la Rosa, José María
    The pyrolysis and hydrothermal carbonization (HTC) of sewage sludge (SS) resulted in products free of pathogens, with the potential for being used as soil amendment. With this work, we evaluated the impact of dry pyrolysis-treated (600 °C, 1 h) and HTC-treated (200 °C, 260 °C; 0.5 h, 3 h) SS on the germination, survival, and growth of Lolium perenne during an 80 day greenhouse experiment. Therefore, the hydrochars and pyrochars were amended to a Calcic Cambisol at doses of 5 and 25 t ha−1. The addition of sludge pyrochars to the Cambisol did not affect Lolium germination, survival rates or plant yields. However, the use 25 t ha−1 of wood biochar reduced germination and survival rates, which may be related to the low N availability of this sample. In comparison to the control, higher or equal plant biomass was produced in the hydrochar-amended pots, even though some hydrochars decreased plant germination and survival rates. Among all the evaluated char properties, only the organic and inorganic N contents of the chars, along with their organic C values, positively correlated with total and shoot biomass production. Our work demonstrates the N fertilization potential of the hydrochar produced at low temperature, whereas the hydrochar produced at 260 °C and the pyrochars were less efficient with respect to plant yields.
  • Item
    Options for optimizing the drying process and reducing dry matter losses in whole-tree storage of poplar from short-rotation coppices in Germany
    (Basel : MDPI, 2020) Pecenka, Ralf; Lenz, Hannes; Hering, Thomas
    For sustainable production of wood in short-rotation coppices and agroforestry systems, it is necessary to optimize the storage processes to achieve low dry matter losses together with low-cost drying. The harvesting of the trees can be carried out very efficiently with modified forage harvesters or tractor-powered mower-chippers. The wood chips produced can be dried naturally at low cost in open-air piles. However, this type of storage is connected with high dry matter losses of up to about one fourth in the course of seven-month storage. Although harvesting whole trees is connected with significantly higher costs, lower dry matter losses are to be expected from storing the trees in piles. Consequently, in this study, the storage and drying behavior of poplar under different German weather conditions and depending on the structure of the storage piles has been examined in detail. After a seven-months storage period, the trees still displayed moisture contents of 41–44% following an initial moisture content of 56% but achieved very low dry matter losses of only 4–7%. Moisture contents of 35–39% could only be achieved in October after a further two-months drying period under favorable weather conditions. All storage piles were built up on approximately 30 cm high support timbers for better ventilation. Additionally, covering the ground with a fleece did not have any influence on the drying behavior, nor did different pile heights. Smaller tree trunk diameters are not only connected with a higher share of bark or ash, but also thinner trunks tend to become damp again more quickly after rainfall. That is why whole-tree storage is suitable above all for medium or longer rotation periods with which, under favorable conditions, the higher harvesting costs can be compensated by a higher wood chip quality and lower storage losses.
  • Item
    Plasma-treated air and water-assessment of synergistic antimicrobial effects for sanitation of food processing surfaces and environment
    (Basel : MDPI, 2019) Schnabel, Uta; Handorf, Oliver; Yarova, Kateryna; Zessin, Björn; Zechlin, Susann; Sydow, Diana; Zellmer, Elke; Stachowiak, Jörg; Andrasch, Mathias; Below, Harald; Ehlbeck, Jörg
    The synergistic antimicrobial effects of plasma-processed air (PPA) and plasma-treated water (PTW), which are indirectly generated by a microwave-induced non-atmospheric pressure plasma, were investigated with the aid of proliferation assays. For this purpose, microorganisms (Listeria monocytogenes, Escherichia coli, Pectobacterium carotovorum, sporulated Bacillus atrophaeus) were cultivated as monocultures on specimens with polymeric surface structures. Both the distinct and synergistic antimicrobial potential of PPA and PTW were governed by the plasma-on time (5–50 s) and the treatment time of the specimens with PPA/PTW (1–5 min). In single PTW treatment of the bacteria, an elevation of the reduction factor with increasing treatment time could be observed (e.g., reduction factor of 2.4 to 3.0 for P. carotovorum). In comparison, the combination of PTW and subsequent PPA treatment leads to synergistic effects that are clearly not induced by longer treatment times. These findings have been valid for all bacteria (L. monocytogenes > P. carotovorum = E. coli). Controversially, the effect is reversed for endospores of B. atrophaeus. With pure PPA treatment, a strong inactivation at 50 s plasma-on time is detectable, whereas single PTW treatment shows no effect even with increasing treatment parameters. The use of synergistic effects of PTW for cleaning and PPA for drying shows a clear alternative for currently used sanitation methods in production plants. Highlights: Non-thermal atmospheric pressure microwave plasma source used indirect in two different modes—gaseous and liquid; Measurement of short and long-living nitrite and nitrate in corrosive gas PPA (plasma-processed air) and complex liquid PTW (plasma-treated water); Application of PTW and PPA in single and combined use for biological decontamination of different microorganisms.
  • Item
    A model approach for yield-zone-specific cost estimation of greenhouse gas mitigation by nitrogen fertilizer reduction
    (Basel : MDPI, 2018) Karatay, Yusuf Nadi; Meyer-Aurich, Andreas
    Nitrogen use in agriculture has been intensified to feed the growing world population, which led to concerns on environmental harms, including greenhouse gas emissions. A reduction in nitrogen fertilization can abate greenhouse gas emissions, however, it may result in crop yield penalties and, accordingly, income loss. Assessment tools are necessary to understand the dynamics of nitrogen management issues both in environmental and economic aspects and both at low and high aggregation levels. Our study presents a model approach, estimating yield-zone-specific costs of greenhouse gas mitigation by moderate reduction of mineral nitrogen fertilizer application. Comparative advantages of mitigating greenhouse gas emissions by nitrogen fertilizer reduction were simulated for five yield-zones with different soil fertility in the state of Brandenburg, Germany. The results suggest that differences in yield response to nitrogen fertilizer lead to considerable differences in greenhouse gas mitigation costs. Overall cost-efficiency of a regional greenhouse gas mitigation by nitrogen fertilizer reduction can be substantially improved, if crop and yield-zone-specific yield responses are taken into account. The output of this study shall help to design cost-efficient agro-environmental policies targeting with specific crop yield response functions at different sites.
  • Item
    Phosphorus speciation in long-term drained and rewetted peatlands of northern germany
    (Basel : MDPI, 2020) Negassa, Wakene; Michalik, Dirk; Klysubun, Wantana; Leinweber, Peter
    Previous studies, conducted at the inception of rewetting degraded peatlands, reported that rewetting increased phosphorus (P) mobilization but long-term effects of rewetting on the soil P status are unknown. The objectives of this study were to (i) characterize P in the surface and subsurface horizons of long-term drained and rewetted percolation mires, forest, and coastal peatlands and (ii) examine the influence of drainage and rewetting on P speciation and distributions using wet-chemical and advanced spectroscopic analyses. The total P was significantly (p < 0.05) different at the surface horizons. The total concentration of P ranged from 1022 to 2320 mg kg−1 in the surface horizons and decreased by a factor of two to five to the deepest horizons. Results of the chemical, solution 31P nuclear magnetic resonance (NMR), and P K-edge X-ray absorption near-edge structure (XANES) indicated that the major proportions of total P were organic P (Po). In the same peatland types, the relative proportions of Po and stable P fractions were lower in the drained than in the rewetted peatland. The results indicate that long-term rewetting not only locks P in organic matter but also transforms labile P to stable P fractions at the surface horizons of the different peatland types. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.