Search Results

Now showing 1 - 10 of 445
  • Item
    Optimizing the Geometry of Photoacoustically Active Gold Nanoparticles for Biomedical Imaging
    (Washington, DC : ACS, 2020) García-Álvarez, Rafaela; Chen, Lisa; Nedilko, Alexander; Sánchez-Iglesias, Ana; Rix, Anne; Lederle, Wiltrud; Pathak, Vertika; Lammers, Twan; von Plessen, Gero; Kostarelos, Kostas; Liz-Marzán, Luis M.; Kuehne, Alexander J.C.; Chigrin, Dmitry N.
    Photoacoustics is an upcoming modality for biomedical imaging, which promises minimal invasiveness at high penetration depths of several centimeters. For superior photoacoustic contrast, imaging probes with high photothermal conversion efficiency are required. Gold nanoparticles are among the best performing photoacoustic imaging probes. However, the geometry and size of the nanoparticles determine their photothermal efficiency. We present a systematic theoretical analysis to determine the optimum nanoparticle geometry with respect to photoacoustic efficiency in the near-infrared spectral range, for superior photoacoustic contrast. Theoretical predictions are illustrated by experimental results for two of the most promising nanoparticle geometries, namely, high aspect ratio gold nanorods and gold nanostars. Copyright © 2020 American Chemical Society.
  • Item
    Las Pailas geothermal field - Central America case study: Deciphering a volcanic geothermal play type through the combination of optimized geophysical exploration methods and classic geological conceptual models of volcano-tectonic systems
    (London [u.a.] : Institute of Physics, 2019) Salguero, Leonardo Solís; Rioseco, Ernesto Meneses
    Sustainable exploitation strategies of high-enthalpy geothermal reservoirs in a volcanic geothermal play type require an accurate understanding of key geological structures such as faults, cap rock and caldera boundaries. Of same importance is the recognition of possible magmatic body intrusions and their morphology, whether they are tabular like dikes, layered like sills or domes. The relative value of those magmatic bodies, their age, shape and location rely on the role they play as possible local heat sources, hydraulic barriers between reservoir compartments, and their far-reaching effect on the geochemistry and dynamics of fluids. Obtaining detailed knowledge and a more complete understanding at the early stages of exploration through integrated geological, geophysical and geochemical methods is essential to determine promising geothermal drilling targets for optimized production/re-injection schemes and for the development of adequate exploitation programs. Valuable, extensive geophysical data gathered at Las Pailas high-enthalpy geothermal field at northwestern Costa Rica combined with detailed understanding of the geological structures in the underground may represent a sound basis for an in-depth geoscientific discussion on this topic. Currently, the German cooperation for the identification of geothermal resources in Central America, implemented by the Federal Institute for Geosciences and Natural Resources (BGR), supports an international and interdisciplinary effort, driven by the Instituto Costarricense de Electricidad (ICE) with different international and national research institutions, including the Leibniz Institute for Applied Geophysics (LIAG). The discussions and joint studies refer to the optimized utilization of geophysical and geological methods for geothermal exploration in the Central American region, using the example of Las Pailas Geothermal Field. The results should contribute to a better understanding of the most appropriate geothermal exploration concepts for complex volcanic field settings in Central America.
  • Item
    Hierarchical fibrous guiding cues at different scales influence linear neurite extension
    ([Amsterdam] : Elsevier, 2020) Omidinia-Anarkoli, Abdolrahman; Ephraim, John Wesley; Rimal, Rahul; De Laporte, Laura
    Surface topographies at micro- and nanoscales can influence different cellular behavior, such as their growth rate and directionality. While different techniques have been established to fabricate 2-dimensional flat substrates with nano- and microscale topographies, most of them are prone to high costs and long preparation times. The 2.5-dimensional fiber platform presented here provides knowledge on the effect of the combination of fiber alignment, inter-fiber distance (IFD), and fiber surface topography on contact guidance to direct neurite behavior from dorsal root ganglia (DRGs) or dissociated primary neurons. For the first time, the interplay of the micro-/nanoscale topography and IFD is studied to induce linear nerve growth, while controlling branching. The results demonstrate that grooved fibers promote a higher percentage of aligned neurite extension, compensating the adverse effect of increased IFD. Accordingly, maximum neurite extension from primary neurons is achieved on grooved fibers separated by an IFD of 30 μm, with a higher percentage of aligned neurons on grooved fibers at a large IFD compared to porous fibers with the smallest IFD of 10 µm. We further demonstrate that the neurite “decision-making” behavior on whether to cross a fiber or grow along it is not only dependent on the IFD but also on the fiber surface topography. In addition, axons growing in between the fibers seem to have a memory after leaving grooved fibers, resulting in higher linear growth and higher IFDs lead to more branching. Such information is of great importance for new material development for several tissue engineering applications. Statement of Significance: One of the key aspects of tissue engineering is controlling cell behavior using hierarchical structures. Compared to 2D surfaces, fibers are an important class of materials, which can emulate the native ECM architecture of tissues. Despite the importance of both fiber surface topography and alignment to direct growing neurons, the current state of the art did not yet study the synergy between both scales of guidance. To achieve this, we established a solvent assisted spinning process to combine these two crucial features and control neuron growth, alignment, and branching. Rational design of new platforms for various tissue engineering and drug discovery applications can benefit from such information as it allows for fabrication of functional materials, which selectively influence neurite behavior. © 2020
  • Item
    Fabrication of a new photo-sensitized solar cell using TiO2\ZnO Nanocomposite synthesized via a modified sol-gel Technique
    (London [u.a.] : Institute of Physics, 2020) Mahdi Rheima, Ahmed; Hadi Hussain, Dhia; Jawad Abed, Hayder
    The current research synthesized was carried out using a modified solgel Technique for titanium dioxide ( TiO2) and zinc oxide (ZnO) nanocomposite. The morphology and optical properties of the synthesized nanocomposite were examined using a transmission electron microscope ( TEM) and UV-Visible spectroscopy. The structure of the synthesized nanocomposite was proved using X-ray Diffraction(XRD). The particle size of the ZnO/TiO2 nanocomposites was found to be range between 11 to 27.37 nm. The product of TEM has proof of the inclusion in the ZnO matrix of spherical TiO2particles. Also found were TiO2 sections attached to the ZnO-like rodlike particles., the ZnO/TiO2 Nanocomposites had better optical absorbing properties. The nanocomposite has been used to create a new photosensitizer solar cell with the efficiency of energy conversion of approximately 4.6%, using (E)-ethyl 4- ((4-nitrobenzylidene)) aminobenzoate as organic photo-sensitized (OPS) by (ITO/TiO2\ZnO nanocomposite/POS/iodine/silver (Ag) nanofilm/ITO).
  • Item
    Conversion of carbon dioxide into storable solar fuels using solar energy
    (London [u.a.] : Institute of Physics, 2019) Ennaceri, Houda; Abel, Bernd
    Nowadays, there are two main energy and environmental concerns, the first is the risk of running out of fossil fuels in the next few decades, and the second is the alarming increase in the carbon dioxide concentrations in the atmosphere, causing global warming and rise of see levels. Therefore, solar-driven technologies represent a substantial solution to fossil fuels dependence, global warming and climate change. Unlike most scientific research, which aim to use solar energy to generate electricity, solar energy can also be harnessed by recycling the carbon dioxide in the atmosphere through high-tech artificial photosynthesis with the objective of producing storable and liquid solar fuels from CO2 and water. There are two types of solar fuels, the first being hydrogen, which can be produced by mean of water splitting processes. The combustion of hydrogen generates water, which is a completely clean option for the environment. The second type of solar fuels consists of carbon-based fuels, such as methane (CH4), carbon monoxide (CO), or alcohols such as methanol (CH3OH) and ethanol (C2H5OH). The production to liquid solar fuels liquid fuels is of great interest, since they can be used in the current industrial infrastructures such as the automobiles' sector, without substantial changes in the vehicles' internal combustion engines. Therefore, guaranteeing a smooth transition from fossil fuel energy to renewable energy without radical economic consequences. Also, and most importantly, when these solar fuels are burned, they will only release the exact amount of CO2 which was initially used, which represents an optimal process for sustainable transport.
  • Item
    High-quality MgB2 nanocrystals synthesized by using modified amorphous nano-boron powders: Study of defect structures and superconductivity properties
    (College Park, MD : American Institute of Physics, 2019) Bateni, A.; Erdem, E.; Häßler, W.; Somer, M.
    Nano sized magnesium diboride (MgB2) samples were synthesized using various high-quality nano-B precursor powders. The microscopic defect structures of MgB2 samples were systematically investigated using X-ray powder diffraction, Raman, resistivity measurements and electron paramagnetic resonance spectroscopy. A significant deviation in the critical temperature Tc was observed due to defects and crystal distortion. The symmetry effect of the latter is also reflected on the vibrational modes in the Raman spectra. Scanning electron microscopy analysis demonstrate uniform and ultrafine morphology for the modified MgB2. Defect center in particular Mg vacancies influence the connectivity and the conductivity properties which are crucial for the superconductivity applications.
  • Item
    Remarkable Mechanochromism in Blends of a π-Conjugated Polymer P3TEOT: The Role of Conformational Transitions and Aggregation
    (Weinheim : Wiley-VCH, 2020) Zessin, Johanna; Schnepf, Max; Oertel, Ulrich; Beryozkina, Tetyana; König, Tobias A.F.; Fery, Andreas; Mertig, Michael; Kiriy, Anton
    A novel mechanism for well-pronounced mechanochromism in blends of a π-conjugated polymer based on reversible conformational transitions of a chromophore rather than caused by its aggregation state, is exemplified. Particularly, a strong stretching-induced bathochromic shift of the light absorption, or hypsochromic shift of the emission, is found in blends of the water-soluble poly(3-tri(ethylene glycol)) (P3TEOT) embedded into the matrix of thermoplastic polyvinyl alcohol. This counterintuitive phenomenon is explained in terms of the concentration dependency of the P3TEOT's aggregation state, which in turn results in different molecular conformations and optical properties. A molecular flexibility, provided by low glass transition temperature of P3TEOT, and the fact that P3TEOT adopts an intermediate, moderately planar conformation in the solid state, are responsible for the unusual complex mechanochromic behavior. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Waveguide-Integrated Broadband Spectrometer Based on Tailored Disorder
    (Weinheim : Wiley-VCH Verlag, 2020) Hartmann, Wladick; Varytis, Paris; Gehring, Helge; Walter, Nicolai; Beutel, Fabian; Busch, Kurt; Pernice, Wolfram
    Compact, on-chip spectrometers exploiting tailored disorder for broadband light scattering enable high-resolution signal analysis while maintaining a small device footprint. Due to multiple scattering events of light in the disordered medium, the effective path length of the device is significantly enhanced. Here, on-chip spectrometers are realized for visible and near-infrared wavelengths by combining an efficient broadband fiber-to-chip coupling approach with a scattering area in a broadband transparent silicon nitride waveguiding structure. Air holes etched into a structured silicon nitride slab terminated with multiple waveguides enable multipath light scattering in a diffusive regime. Spectral-to-spatial mapping is performed by determining the transmission matrix at the waveguide outputs, which is then used to reconstruct the probe signals. Direct comparison with theoretical analyses shows that such devices can be used for high-resolution spectroscopy from the visible up to the telecom wavelength regime. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Actively Tunable Collective Localized Surface Plasmons by Responsive Hydrogel Membrane
    (Weinheim : Wiley-VCH, 2019) Quilis, Nestor Gisbert; van Dongen, Marcel; Venugopalan, Priyamvada; Kotlarek, Daria; Petri, Christian; Cencerrado, Alberto Moreno; Stanescu, Sorin; Herrera, Jose Luis Toca; Jonas, Ulrich; Möller, Martin; Mourran, Ahmed; Dostalek, Jakub
    Collective (lattice) localized surface plasmons (cLSP) with actively tunable and extremely narrow spectral characteristics are reported. They are supported by periodic arrays of gold nanoparticles attached to a stimuli-responsive hydrogel membrane, which can on demand swell and collapse to reversibly modulate arrays period and surrounding refractive index. In addition, it features a refractive index-symmetrical geometry that promotes the generation of cLSPs and leads to strong suppression of radiative losses, narrowing the spectral width of the resonance, and increasing of the electromagnetic field intensity. Narrowing of the cLSP spectral band down to 13 nm and its reversible shifting by up to 151 nm is observed in the near infrared part of the spectrum by varying temperature and by solvent exchange for systems with a poly(N-isopropylacrylamide)-based hydrogel membrane that is allowed to reversibly swell and collapse in either one or in three dimensions. The reported structures with embedded periodic gold nanoparticle arrays are particularly attractive for biosensing applications as the open hydrogel structure can be efficiently post-modified with functional moieties, such as specific ligands, and since biomolecules can rapidly diffuse through swollen polymer networks. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Self-Assembled Flexible and Integratable 3D Microtubular Asymmetric Supercapacitors
    (Chichester : John Wiley and Sons Ltd, 2019) Li, F.; Wang, J.; Liu, L.; Qu, J.; Li, Y.; Bandari, V.K.; Karnaushenko, D.; Becker, C.; Faghih, M.; Kang, T.; Baunack, S.; Zhu, M.; Zhu, F.; Schmidt, O.G.
    The rapid development of microelectronics has equally rapidly increased the demand for miniaturized energy storage devices. On-chip microsupercapacitors (MSCs), as promising power candidates, possess great potential to complement or replace electrolytic capacitors and microbatteries in various applications. However, the areal capacities and energy densities of the planar MSCs are commonly limited by the low voltage window, the thin layer of the electrode materials and complex fabrication processes. Here, a new-type three-dimensional (3D) tubular asymmetric MSC with small footprint area, high potential window, ultrahigh areal energy density, and long-term cycling stability is fabricated with shapeable materials and photolithographic technologies, which are compatible with modern microelectronic fabrication procedures widely used in industry. Benefiting from the novel architecture, the 3D asymmetric MSC displays an ultrahigh areal capacitance of 88.6 mF cm−2 and areal energy density of 28.69 mW h cm−2, superior to most reported interdigitated MSCs. Furthermore, the 3D tubular MSCs demonstrate remarkable cycling stability and the capacitance retention is up to 91.8% over 12 000 cycles. It is believed that the efficient fabrication methodology can be used to construct various integratable microscale tubular energy storage devices with small footprint area and high performance for miniaturized electronics.