Search Results

Now showing 1 - 10 of 47
Loading...
Thumbnail Image
Item

Climatologies and long-term changes in mesospheric wind and wave measurements based on radar observations at high and mid latitudes

2019, Wilhelm, S., Stober, G., Brown, P.

We report on long-term observations of atmospheric parameters in the mesosphere and lower thermosphere (MLT) made over the last 2 decades. Within this study, we show, based on meteor wind measurement, the long-term variability of winds, tides, and kinetic energy of planetary and gravity waves. These measurements were done between the years 2002 and 2018 for the high-latitude location of Andenes (69.3°N, 16°E) and the mid-latitude locations of Juliusruh (54.6°N, 13.4°E) and Tavistock (43.3°N, 80.8°W). While the climatologies for each location show a similar pattern, the locations differ strongly with respect to the altitude and season of several parameters. Our results show annual wind tendencies for Andenes which are toward the south and to the west, with changes of up to 3°m s-1 per decade, while the mid-latitude locations show smaller opposite tendencies to negligible changes. The diurnal tides show nearly no significant long-term changes, while changes for the semidiurnal tides differ regarding altitude. Andenes shows only during winter a tidal weakening above 90°km, while for the Canadian Meteor Orbit Radar (CMOR) an enhancement of the semidiurnal tides during the winter and a weakening during fall occur. Furthermore, the kinetic energy for planetary waves showed strong peak values during winters which also featured the occurrence of sudden stratospheric warming. The influence of the 11-year solar cycle on the winds and tides is presented. The amplitudes of the mean winds exhibit a significant amplitude response for the zonal component below 82°km during summer and from November to December between 84 and 95°km at Andenes and CMOR. The semidiurnal tides (SDTs) show a clear 11-year response at all locations, from October to November. © 2019 by ASME.

Loading...
Thumbnail Image
Item

On the Buoyancy Subrange in Stratified Turbulence

2020, Avsarkisov, Victor

This study is motivated by the importance of the stratified turbulence in geophysical flows. We present a theoretical analysis of the buoyancy subrange based on the theory of strongly stratified turbulence. Some important turbulent scales and their relations are explored. Scaling constants of the buoyancy subrange scaling laws for both kinetic and potential energy spectra are derived and analyzed. It is found that these constants are functions of the horizontal Froude number Frh . For the potential energy spectrum, the scaling constant also depends on the turbulent flux coefficient of Γ .

Loading...
Thumbnail Image
Item

Year-round stratospheric aerosol backscatter ratios calculated from lidar measurements above northern Norway

2019, Langenbach, A., Baumgarten, G., Fiedler, J., Lübken, F.-J., Von Savigny, C., Zalach, J.

We present a new method for calculating backscatter ratios of the stratospheric sulfate aerosol (SSA) layer from daytime and nighttime lidar measurements. Using this new method we show a first year-round dataset of stratospheric aerosol backscatter ratios at high latitudes. The SSA layer is located at altitudes between the tropopause and about 30 km. It is of fundamental importance for the radiative balance of the atmosphere. We use a state-of-the-art Rayleigh-Mie-Raman lidar at the Arctic Lidar Observatory for Middle Atmosphere Research (ALOMAR) station located in northern Norway (69N, 16E; 380ma.s.l.). For nighttime measurements the aerosol backscatter ratios are derived using elastic and inelastic backscatter of the emitted laser wavelengths 355, 532 and 1064nm. The setup of the lidar allows measurements with a resolution of about 5 min in time and 150 m in altitude to be performed in high quality, which enables the identification of multiple sub-layers in the stratospheric aerosol layer of less than 1 km vertical thickness. We introduce a method to extend the dataset throughout the summer when measurements need to be performed under permanent daytime conditions. For that purpose we approximate the backscatter ratios from color ratios of elastic scattering and apply a correction function. We calculate the correction function using the average backscatter ratio profile at 355nm from about 1700 h of nighttime measurements from the years 2000 to 2018. Using the new method we finally present a year-round dataset based on about 4100 h of measurements during the years 2014 to 2017. © Author(s) 2019.

Loading...
Thumbnail Image
Item

Enhancing the spatiotemporal features of polar mesosphere summer echoes using coherent MIMO and radar imaging at MAARSY

2019, Urco, J.M., Chau, J.L., Weber, T., Latteck, R.

Polar mesospheric summer echoes (PMSEs) are very strong radar echoes caused by the presence of ice particles, turbulence, and free electrons in the mesosphere over polar regions. For more than three decades, PMSEs have been used as natural tracers of the complicated atmospheric dynamics of this region. Neutral winds and turbulence parameters have been obtained assuming PMSE horizontal homogeneity on scales of tens of kilometers. Recent radar imaging studies have shown that PMSEs are not homogeneous on these scales and instead they are composed of kilometer-scale structures. In this paper, we present a technique that allows PMSE observations with unprecedented angular resolution (∼0.6). The technique combines the concept of coherent MIMO (Multiple Input Multiple Output) and two high-resolution imaging techniques, i.e., Capon and maximum entropy (MaxEnt). The resulting resolution is evaluated by imaging specular meteor echoes. The gain in angular resolution compared to previous approaches using SIMO (Single Input Multiple Output) and Capon is at least a factor of 2; i.e., at 85 km, we obtain a horizontal resolution of ∼900 m. The advantage of the new technique is evaluated with two events of 3-D PMSE structures showing: (1) horizontal wavelengths of 8-10 km and periods of 4-7 min, drifting with the background wind, and (2) horizontal wavelengths of 12-16 km and periods of 15-20 min, not drifting with the background wind. Besides the advantages of the implemented technique, we discuss its current challenges, like the use of reduced power aperture and processing time, as well as the future opportunities for improving the understanding of the complex small-scale atmospheric dynamics behind PMSEs. © 2019 Author(s).

Loading...
Thumbnail Image
Item

Local stratopause temperature variabilities and their embedding in the global context

2020, Eixmann, Ronald, Matthias, Vivien, Höffner, Josef, Baumgarten, Gerd, Gerding, Michael

The stratopause is by definition the transition between the stratosphere and mesosphere. During winter the circulation at mid-latitudes and high latitudes in the stratosphere is mainly driven by quasi-stationary planetary waves (PWs), while the circulation in the mesosphere is mainly driven by gravity waves (GWs). The question arises of whether PWs or GWs dominate the variability of the stratopause. The most famous and dramatic variability of the middle atmosphere is a sudden stratospheric warming (SSW) generated by PWs interacting with the polar vortex. A similar phenomenon but smaller in magnitude and more regional is stratopause temperature enhancements (STEs) initially observed by local measurements and generated by breaking PWs. Thus it seems that PWs dominate the variability of the stratopause. In this study we want to quantify to which extent quasi-stationary PWs contribute to the stratopause variability. To do that we combine local lidar observations at Kühlungsborn (54∘ N, 11∘ E) and Andenes (69∘ N, 16∘ E) with global MERRA-2 reanalysis data bringing the local variability of the stratopause into the global context. Therefore we compare the temperature time series at Kühlungsborn and Andenes at 2 hPa, the altitude where STEs maximize, with characteristics (amplitude and phase) of PWs with wave numbers 1, 2 and 3. We found that for Kühlungsborn and Andenes 98 % of the local day-to-day variability of the stratopause can be explained by the variability of PWs with wave number 1, 2 and 3. Thus, the winter stratopause day-to-day variability is highly dominated by the variability of PWs.

Loading...
Thumbnail Image
Item

Atomic oxygen number densities in the mesosphere–lower thermosphere region measured by solid electrolyte sensors onWADIS-2

2019, Eberhart, Martin, Löhle, Stefan, Strelnikov, Boris, Hedin, Jonas, Khaplanov, Mikhail, Fasoulas, Stefanos, Gumbel, Jörg, Lübken, Franz-Josef, Rapp, Markus

Absolute profiles of atomic oxygen number densities with high vertical resolution have been determined in the mesosphere-lower thermosphere (MLT) region from in situ measurements by several rocket-borne solid electrolyte sensors. The amperometric sensors were operated in both controlled and uncontrolled modes and with various orientations on the foredeck and aft deck of the payload. Calibration was based on mass spectrometry in a molecular beam containing atomic oxygen produced in a microwave discharge. The sensor signal is proportional to the number flux onto the electrodes, and the mass flow rate in the molecular beam was additionally measured to derive this quantity from the spectrometer reading. Numerical simulations provided aerodynamic correction factors to derive the atmospheric number density of atomic oxygen from the sensor data. The flight results indicate a preferable orientation of the electrode surface perpendicular to the rocket axis. While unstable during the upleg, the density profiles measured by these sensors show an excellent agreement with the atmospheric models and photometer results during the downleg of the trajectory. The high spatial resolution of the measurements allows for the identification of small-scale variations in the atomic oxygen concentration. © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License.

Loading...
Thumbnail Image
Item

Evaluation of wake influence on high-resolution balloon-sonde measurements

2019, Söder, J., Gerding, M., Schneider, A., Dörnbrack, A., Wilms, H., Wagner, J., Lübken, F.-J.

Balloons are used for various in situ measurements in the atmosphere. On turbulence measurements from rising balloons there is a potential for misinterpreting wake-created fluctuations in the trail of the balloon for atmospheric turbulence. These wake effects have an influence on temperature and humidity measurements from radiosondes as well. The primary aim of this study is to assess the likelihood for wake encounter on the payload below a rising balloon. Therefore, we present a tool for calculating this probability based on radiosonde wind data. This includes a retrieval of vertical winds from the radiosonde and an uncertainty analysis of the wake assessment. Our wake evaluation tool may be used for any balloon-gondola distance and provides a significant refinement compared to existing assessments. We have analysed wake effects for various balloon-gondola distances applying atmospheric background conditions from a set of 30 radiosondes. For a standard radiosonde we find an average probability for wake encounter of 28 %, pointing out the importance of estimating wake effects on sounding balloons. Furthermore, we find that even millimetre-sized objects in the payload can have significant effects on high-resolution turbulence measurements, if they are located upstream of the turbulence sensor. © Author(s) 2019. This work is distributed under.

Loading...
Thumbnail Image
Item

A Method for Retrieving Stratospheric Aerosol Extinction and Particle Size from Ground-Based Rayleigh-Mie-Raman Lidar Observations

2020, Zalach, Jacob, von Savigny, Christian, Langenbach, Arvid, Baumgarten, Gerd, Lübken, Franz-Josef, Bourassa, Adam

We report on the retrieval of stratospheric aerosol particle size and extinction coefficient profiles from multi-color backscatter measurements with the Rayleigh-Mie-Raman lidar operated at the Arctic Lidar Observatory for Middle Atmosphere Research (ALOMAR) in northern Norway. The retrievals are based on a two-step approach. In a first step, the median radius of an assumed monomodal log-normal particle size distribution with fixed width is retrieved based on a color index formed from the measured backscatter ratios at the wavelengths of 1064nm and 532 nm. An intrinsic ambiguity of the retrieved aerosol size information is discussed. In a second step, this particle size information is used to convert the measured lidar backscatter ratio to aerosol extinction coefficients. The retrieval is currently based on monthly-averaged lidar measurements and the results for March 2013 are discussed. A sensitivity study is presented that allows for establishing an error budget for the aerosol retrievals. Assuming a monomodal log-normal aerosol particle size distribution with a geometric width of S = 1.5, median radii on the order of below 100 nm are retrieved. The median radii are found to generally decrease with increasing altitude. The retrieved aerosol extinction profiles are compared to observations with the OSIRIS (Optical Spectrograph and InfraRed Imager System) and the OMPS-LP (Ozone Mapping Profiling Suite Limb Profiler) satellite instruments in the 60° N to 80° N latitude band. The extinction profiles that were retrieved from the lidar measurements show good agreement with the observations of the two satellite instruments when taking the different wavelengths of the instruments into account. © 2020 by the authors.

Loading...
Thumbnail Image
Item

A new method of inferring the size, number density, and charge of mesospheric dust from its in situ collection by the DUSTY probe

2019, Havnes, Ove, Antonsen, Tarjei, Baumgarten, Gerd, Hartquist, Thomas W., Biebricher, Alexander, Fredriksen, Åshild, Friedrich, Martin, Hedin, Jonas

We present a new method of analyzing measurements of mesospheric dust made with DUSTY rocket-borne Faraday cup probes. It can yield the variation in fundamental dust parameters through a mesospheric cloud with an altitude resolution down to 10 cm or less if plasma probes give the plasma density variations with similar height resolution. A DUSTY probe was the first probe that unambiguously detected charged dust and aerosol particles in the Earth's mesosphere. DUSTY excluded the ambient plasma by various biased grids, which however allowed dust particles with radii above a few nanometers to enter, and it measured the flux of charged dust particles. The flux measurements directly yielded the total ambient dust charge density. We extend the analysis of DUSTY data by using the impact currents on its main grid and the bottom plate as before, together with a dust charging model and a secondary charge production model, to allow the determination of fundamental parameters, such as dust radius, charge number, and total dust density. We demonstrate the utility of the new analysis technique by considering observations made with the DUSTY probes during the MAXIDUSTY rocket campaign in June-July 2016 and comparing the results with those of other instruments (lidar and photometer) also used in the campaign. In the present version we have used monodisperse dust size distributions.© Author(s) 2019.

Loading...
Thumbnail Image
Item

Advanced hodograph-based analysis technique to derive gravity-wave parameters from lidar observations

2020, Strelnikova, Irina, Baumgarten, Gerd, Lübken, Franz-Josef

An advanced hodograph-based analysis technique to derive gravity-wave (GW) parameters from observations of temperature and winds is developed and presented as a step-by-step recipe with justification for every step in such an analysis. As the most adequate background removal technique the 2-D FFT is suggested. For an unbiased analysis of fluctuation whose amplitude grows with height exponentially, we propose applying a scaling function of the form exp (z∕(ςH)), where H is scale height, z is altitude, and the constant ς can be derived by a linear fit to the fluctuation profile and should be in the range 1–10. The most essential part of the proposed analysis technique consists of fitting cosine waves to simultaneously measured profiles of zonal and meridional winds and temperature and subsequent hodograph analysis of these fitted waves. The linear wave theory applied in this analysis is extended by introducing a wave packet envelope term exp(−(z−z0)2/2σ2) that accounts for limited extent of GWs in the observational data set. The novelty of our approach is that its robustness ultimately allows for automation of the hodograph analysis and resolves many more GWs than can be inferred by the manually applied hodograph technique. This technique allows us to unambiguously identify upward- and downward-propagating GWs and their parameters. This technique is applied to unique lidar measurements of temperature and horizontal winds measured in an altitude range of 30 to 70 km.