Search Results

Now showing 1 - 10 of 11
Loading...
Thumbnail Image
Item

PeakTree: A framework for structure-preserving radar Doppler spectra analysis

2019, Radenz, M., Bühl, J., Seifert, P., Griesche, H., Engelmann, R.

Clouds are frequently composed of more than one particle population even at the smallest scales. Cloud radar observations frequently contain information on multiple particle species in the observation volume when there are distinct peaks in the Doppler spectrum. Multi-peaked situations are not taken into account by established algorithms, which only use moments of the Doppler spectrum. In this study, we propose a new algorithm that recursively represents the subpeaks as nodes in a binary tree. Using this tree data structure to represent the peaks of a Doppler spectrum, it is possible to drop all a priori assumptions on the number and arrangement of subpeaks. The approach is rigid, unambiguous and can provide a basis for advanced analysis methods. The applicability is briefly demonstrated in two case studies, in which the tree structure was used to investigate particle populations in Arctic multilayered mixed-phase clouds, which were observed during the research vessel Polarstern expedition PS106 and the Atmospheric Radiation Measurement Program BAECC campaign.

Loading...
Thumbnail Image
Item

Annual variability of ice-nucleating particle concentrations at different Arctic locations

2019, Wex, H., Huang, L., Zhang, W., Hung, H., Traversi, R., Becagli, S., Sheesley, R.J., Moffett, C.E., Barrett, T.E., Bossi, R., Skov, H., Hünerbein, A., Lubitz, J., Löffler, M., Linke, O., Hartmann, M., Herenz, P., Stratmann, F.

Number concentrations of ice-nucleating particles (NINP) in the Arctic were derived from ground-based filter samples. Examined samples had been collected in Alert (Nunavut, northern Canadian archipelago on Ellesmere Island), Utqiagvik, formerly known as Barrow (Alaska), Nyalesund (Svalbard), and at the Villum Research Station (VRS; northern Greenland). For the former two stations, examined filters span a full yearly cycle. For VRS, 10 weekly samples, mostly from different months of one year, were included. Samples from Ny-Alesund were collected during the months from March until September of one year. At all four stations, highest concentrations were found in the summer months from roughly June to September. For those stations with sufficient data coverage, an annual cycle can be seen. The spectra of NINP observed at the highest temperatures, i.e., those obtained for summer months, showed the presence of INPs that nucleate ice up to-5 °C. Although the nature of these highly ice-active INPs could not be determined in this study, it often has been described in the literature that ice activity observed at such high temperatures originates from the presence of ice-active material of biogenic origin. Spectra observed at the lowest temperatures, i.e., those derived for winter months, were on the lower end of the respective values from the literature on Arctic INPs or INPs from midlatitude continental sites, to which a comparison is presented herein. An analysis concerning the origin of INPs that were ice active at high temperatures was carried out using back trajectories and satellite information. Both terrestrial locations in the Arctic and the adjacent sea were found to be possible source areas for highly active INPs.

Loading...
Thumbnail Image
Item

Wintertime Airborne Measurements of Ice Nucleating Particles in the High Arctic: A Hint to a Marine, Biogenic Source for Ice Nucleating Particles

2020, Hartmann, M., Adachi, K., Eppers, O., Haas, C., Herber, A., Holzinger, R., Hünerbein, A., Jäkel, E., Jentzsch, C., van Pinxteren, M., Wex, H., Willmes, S., Stratmann, F.

Ice nucleating particles (INPs) affect the radiative properties of cold clouds. Knowledge concerning their concentration above ground level and their potential sources is scarce. Here we present the first highly temperature resolved ice nucleation spectra of airborne samples from an aircraft campaign during late winter in 2018. Most INP spectra featured low concentration levels (<3 · 10−4 L−1 at −15°C). However, we also found INP concentrations of up to 1.8·10−2 L−1 at −15°C and freezing onsets as high as −7.5°C for samples mainly from the marine boundary layer. Shape and onset temperature of the ice nucleation spectra of those samples as well as heat sensitivity hint at biogenic INP. Colocated measurements additionally indicate a local marine influence rather than long-range transport. Our results suggest that even in late winter above 80°N a local marine source for biogenic INP, which can efficiently nucleate ice at high temperatures, is present. ©2020. The Authors.

Loading...
Thumbnail Image
Item

Variation of Ice Nucleating Particles in the European Arctic Over the Last Centuries

2019, Hartmann, M., Blunier, T., Brügger, S.O., Schmale, J., Schwikowski, M., Vogel, A., Wex, H., Stratmann, F.

The historical development of ice nucleating particle concentrations (NINP) is still unknown. Here, we present for the first time NINP from the past 500 years at two Arctic sites derived from ice core samples. The samples originate from the EUROCORE ice core (Summit, Central Greenland) and from the Lomo09 ice core (Lomonosovfonna, Svalbard). No long-term trend is obvious in the measured samples, and the overall range of NINP is comparable to present-day observations. We observe that the short-term variations in NINP is larger than the long-term variability, but neither anthropogenic pollution nor volcanic eruptions seem to have influenced NINP in the measured temperature range. Shape and onset temperature of several INP spectra suggest that INP of biogenic origin contributed to the Arctic INP population throughout the past. ©2019. The Authors.

Loading...
Thumbnail Image
Item

Application of the shipborne remote sensing supersite OCEANET for profiling of Arctic aerosols and clouds during Polarstern cruise PS106

2020, Griesche, Hannes J., Seifer, Patric, Ansmann, Albert, Baars, Holger, Velasco, Carola Barrientos, Bühl, Johannes, Engelmann, Ronny, Radenz, Martin, Zhenping, Yin, Macke, Andreas

From 25 May to 21 July 2017, the research vessel Polarstern performed the cruise PS106 to the high Arctic in the region north and northeast of Svalbard. The mobile remote-sensing platform OCEANET was deployed aboard Polarstern. Within a single container, OCEANET houses state-of-the-art remote-sensing equipment, including a multiwavelength Raman polarization lidar PollyXT and a 14-channel microwave radiometer HATPRO (Humidity And Temperature PROfiler). For the cruise PS106, the measurements were supplemented by a motion-stabilized 35 GHz cloud radar Mira-35. This paper describes the treatment of technical challenges which were immanent during the deployment of OCEANET in the high Arctic. This includes the description of the motion stabilization of the cloud radar Mira-35 to ensure vertical-pointing observations aboard the moving Polarstern as well as the applied correction of the vessels heave rate to provide valid Doppler velocities. The correction ensured a leveling accuracy of ±0.5◦ during transits through the ice and an ice floe camp. The applied heave correction reduced the signal induced by the vertical movement of the cloud radar in the PSD of the Doppler velocity by a factor of 15. Low-level clouds, in addition, frequently prevented a continuous analysis of cloud conditions from synergies of lidar and radar within Cloudnet, because the technically determined lowest detection height of Mira-35 was 165 m above sea level. To overcome this obstacle, an approach for identification of the cloud presence solely based on data from the near-field receiver of PollyXT at heights from 50 m and 165 m above sea level is presented. We found low-level stratus clouds, which were below the lowest detection range of most automatic ground-based remote-sensing instruments during 25 % of the observation time. We present case studies of aerosol and cloud studies to introduce the capabilities of the data set. In addition, new approaches for ice crystal effective radius and eddy dissipation rates from cloud radar measurements and the retrieval of aerosol optical and microphysical properties from the observations of PollyXT are introduced. © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.

Loading...
Thumbnail Image
Item

Combining atmospheric and snow radiative transfer models to assess the solar radiative effects of black carbon in the Arctic

2020, Donth, Tobias, Jäkel, Evelyn, Ehrlich, André, Heinold, Bernd, Schacht, Jacob, Herber, Andreas, Zanatta, Marco, Wendisch, Manfred

The magnitude of solar radiative effects (cooling or warming) of black carbon (BC) particles embedded in the Arctic atmosphere and surface snow layer was explored on the basis of case studies. For this purpose, combined atmospheric and snow radiative transfer simulations were performed for cloudless and cloudy conditions on the basis of BC mass concentrations measured in pristine early summer and more polluted early spring conditions. The area of interest is the remote sea-ice-covered Arctic Ocean in the vicinity of Spitsbergen, northern Greenland, and northern Alaska typically not affected by local pollution. To account for the radiative interactions between the black-carbon-containing snow surface layer and the atmosphere, an atmospheric and snow radiative transfer model were coupled iteratively. For pristine summer conditions (no atmospheric BC, minimum solar zenith angles of 55 ) and a representative BC particle mass concentration of 5 ng g-1 in the surface snow layer, a positive daily mean solar radiative forcing of +0.2 W m-2 was calculated for the surface radiative budget. A higher load of atmospheric BC representing early springtime conditions results in a slightly negative mean radiative forcing at the surface of about -0.05 W m-2, even when the low BC mass concentration measured in the pristine early summer conditions was embedded in the surface snow layer. The total net surface radiative forcing combining the effects of BC embedded in the atmosphere and in the snow layer strongly depends on the snow optical properties (snow specific surface area and snow density). For the conditions over the Arctic Ocean analyzed in the simulations, it was found that the atmospheric heating rate by water vapor or clouds is 1 to 2 orders of magnitude larger than that by atmospheric BC. Similarly, the daily mean total heating rate (6 K d-1) within a snowpack due to absorption by the ice was more than 1 order of magnitude larger than that of atmospheric BC (0.2 K d-1). Also, it was shown that the cooling by atmospheric BC of the near-surface air and the warming effect by BC embedded in snow are reduced in the presence of clouds. © 2020 Copernicus GmbH. All rights reserved.

Loading...
Thumbnail Image
Item

A prequel to the Dantean Anomaly: The precipitation seesaw and droughts of 1302 to 1307 in Europe

2020, Bauch, Martin, Labbé, Thomas, Engel, Annabell, Seifert, Patric

The cold/wet anomaly of the 1310s ("Dantean Anomaly") has attracted a lot of attention from scholars, as it is commonly interpreted as a signal of the transition between the Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA). The huge variability that can be observed during this decade, like the high interannual variability observed in the 1340s, has been highlighted as a side effect of this rapid climatic transition. In this paper, we demonstrate that a multiseasonal drought of almost 2 years occurred in the Mediterranean between 1302 and 1304, followed by a series of hot, dry summers north of the Alps from 1304 to 1306. We suggest that this outstanding dry anomaly, unique in the 13th and 14th centuries, together with cold anomalies of the 1310s and the 1340s, is part of the climatic shift from the MCA to the LIA. Our reconstruction of the predominant weather patterns of the first decade of the 14th century based on both documentary and proxy data identifies multiple European precipitation seesaw events between 1302 and 1307, with similarities to the seesaw conditions which prevailed over continental Europe in 2018. It can be debated to what extent the 1302 1307 period can be compared to what is currently discussed regarding the influence of the phenomenon of Arctic amplification on the increasing frequency of persistent stable weather patterns that have occurred since the late 1980s. Additionally, this paper deals with socioeconomic and cultural responses to drought risks in the Middle Ages as outlined in contemporary sources and provides evidence that there is a significant correlation between pronounced dry seasons and fires that devastated cities. © 2020 Copernicus GmbH. All rights reserved.

Loading...
Thumbnail Image
Item

New particle formation and its effect on cloud condensation nuclei abundance in the summer Arctic: A case study in the Fram Strait and Barents Sea

2019, Kecorius, Simonas, Vogl, Teresa, Paasonen, Pauli, Lampilahti, Janne, Rothenberg, Daniel, Wex, Heike, Zeppenfeld, Sebastian, van Pinxteren, Manuela, Hartmann, Markus, Henning, Silvia, Gong, Xianda, Welti, Andre, Kulmala, Markku, Stratmann, Frank, Herrmann, Hartmut, Wiedensohler, Alfred

In a warming Arctic the increased occurrence of new particle formation (NPF) is believed to originate from the declining ice coverage during summertime. Understanding the physico-chemical properties of newly formed particles, as well as mechanisms that control both particle formation and growth in this pristine environment, is important for interpreting aerosol-cloud interactions, to which the Arctic climate can be highly sensitive. In this investigation, we present the analysis of NPF and growth in the high summer Arctic. The measurements were made on-board research vessel Polarstern during the PS106 Arctic expedition. Four distinctive NPF and subsequent particle growth events were observed, during which particle (diameter in a range 10-50 nm) number concentrations increased from background values of approx. 40 up to 4000 cm-3. Based on particle formation and growth rates, as well as hygroscopicity of nucleation and the Aitken mode particles, we distinguished two different types of NPF events. First, some NPF events were favored by negative ions, resulting in more-hygroscopic nucleation mode particles and suggesting sulfuric acid as a precursor gas. Second, other NPF events resulted in less-hygroscopic particles, indicating the influence of organic vapors on particle formation and growth. To test the climatic relevance of NPF and its influence on the cloud condensation nuclei (CCN) budget in the Arctic, we applied a zero-dimensional, adiabatic cloud parcel model. At an updraft velocity of 0.1 m s-1, the particle number size distribution (PNSD) generated during nucleation processes resulted in an increase in the CCN number concentration by a factor of 2 to 5 compared to the background CCN concentrations. This result was confirmed by the directly measured CCN number concentrations. Although particles did not grow beyond 50 nm in diameter and the activated fraction of 15-50 nm particles was on average below 10 %, it could be shown that the sheer number of particles produced by the nucleation process is enough to significantly influence the background CCN number concentration. This implies that NPF can be an important source of CCN in the Arctic. However, more studies should be conducted in the future to understand mechanisms of NPF, sources of precursor gases and condensable vapors, as well as the role of the aged nucleation mode particles in Arctic cloud formation. © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License.

Loading...
Thumbnail Image
Item

A simple stress-based cliff-calving law

2019, Schlemm, T., Levermann, A.

Over large coastal regions in Greenland and Antarctica the ice sheet calves directly into the ocean. In contrast to ice-shelf calving, an increase in calving from grounded glaciers contributes directly to sea-level rise. Ice cliffs with a glacier freeboard larger than ≈100 m are currently not observed, but it has been shown that such ice cliffs are increasingly unstable with increasing ice thickness. This cliff calving can constitute a self-amplifying ice loss mechanism that may significantly alter sea-level projections both of Greenland and Antarctica. Here we seek to derive a minimalist stress-based parametrization for cliff calving from grounded glaciers whose freeboards exceed the 100 m stability limit derived in previous studies. This will be an extension of existing calving laws for tidewater glaciers to higher ice cliffs.

To this end we compute the stress field for a glacier with a simplified two-dimensional geometry from the two-dimensional Stokes equation. First we assume a constant yield stress to derive the failure region at the glacier front from the stress field within the glacier. Secondly, we assume a constant response time of ice failure due to exceedance of the yield stress. With this strongly constraining but very simple set of assumptions we propose a cliff-calving law where the calving rate follows a power-law dependence on the freeboard of the ice with exponents between 2 and 3, depending on the relative water depth at the calving front. The critical freeboard below which the ice front is stable decreases with increasing relative water depth of the calving front. For a dry water front it is, for example, 75 m. The purpose of this study is not to provide a comprehensive calving law but to derive a particularly simple equation with a transparent and minimalist set of assumptions.

Loading...
Thumbnail Image
Item

Dansgaard-Oeschger-like events of the penultimate climate cycle: The loess point of view

2020, Rousseau, Denis-Didier, Antoine, Pierre, Boers, Niklas, Lagroix, France, Ghil, Michael, Lomax, Johanna, Fuchs, Markus, Debret, Maxime, Hatté, Christine, Moine, Olivier, Gauthier, Caroline, Jordanova, Diana, Jordanova, Neli

The global character of the millennial-scale climate variability associated with the Dansgaard-Oeschger (DO) events in Greenland has been well-established for the last glacial cycle. Mainly due to the sparsity of reliable data, however, the spatial coherence of corresponding variability during the penultimate cycle is less clear. New investigations of European loess records from Marine Isotope Stage (MIS) 6 reveal the occurrence of alternating loess intervals and paleosols (incipient soil horizons), similar to those from the last climatic cycle. These paleosols are correlated, based on their stratigraphical position and numbers as well as available optically stimulated luminescence (OSL) dates, with interstadials described in various Northern Hemisphere records and in GLt_syn, the synthetic 800 kyr record of Greenland ice core