Search Results

Now showing 1 - 7 of 7
  • Item
    EMT-Induced Cell-Mechanical Changes Enhance Mitotic Rounding Strength
    (Weinheim : Wiley-VCH, 2020) Hosseini, Kamran; Taubenberger, Anna; Werner, Carsten; Fischer-Friedrich, Elisabeth
    To undergo mitosis successfully, most animal cells need to acquire a round shape to provide space for the mitotic spindle. This mitotic rounding relies on mechanical deformation of surrounding tissue and is driven by forces emanating from actomyosin contractility. Cancer cells are able to maintain successful mitosis in mechanically challenging environments such as the increasingly crowded environment of a growing tumor, thus, suggesting an enhanced ability of mitotic rounding in cancer. Here, it is shown that the epithelial–mesenchymal transition (EMT), a hallmark of cancer progression and metastasis, gives rise to cell-mechanical changes in breast epithelial cells. These changes are opposite in interphase and mitosis and correspond to an enhanced mitotic rounding strength. Furthermore, it is shown that cell-mechanical changes correlate with a strong EMT-induced change in the activity of Rho GTPases RhoA and Rac1. Accordingly, it is found that Rac1 inhibition rescues the EMT-induced cortex-mechanical phenotype. The findings hint at a new role of EMT in successful mitotic rounding and division in mechanically confined environments such as a growing tumor.
  • Item
    Vertical organic permeable dual-base transistors for logic circuits
    ([London] : Nature Publishing Group UK, 2020) Guo, Erjuan; Wu, Zhongbin; Darbandy, Ghader; Xing, Shen; Wang, Shu-Jen; Tahn, Alexander; Göbel, Michael; Kloes, Alexander; Leo, Karl; Kleemann, Hans
    The main advantage of organic transistors with dual gates/bases is that the threshold voltages can be set as a function of the applied second gate/base bias, which is crucial for the application in logic gates and integrated circuits. However, incorporating a dual gate/base structure into an ultra-short channel vertical architecture represents a substantial challenge. Here, we realize a device concept of vertical organic permeable dual-base transistors, where the dual base electrodes can be used to tune the threshold voltages and change the on-currents. The detailed operation mechanisms are investigated by calibrated TCAD simulations. Finally, power-efficient logic circuits, e.g. inverter, NAND/AND computation functions are demonstrated with one single device operating at supply voltages of <2.0 V. We believe that this work offers a compact and technologically simple hardware platform with excellent application potential for vertical-channel organic transistors in complex logic circuits.
  • Item
    Pseudo-chemotaxis of active Brownian particles competing for food
    (San Francisco, California, US : PLOS, 2020) Merlitz, Holger; Vuijk, Hidde D.; Wittmann, René; Sharma, Abhinav; Sommer, Jens-Uwe
    Active Brownian particles (ABPs) are physical models for motility in simple life forms and easily studied in simulations. An open question is to what extent an increase of activity by a gradient of fuel, or food in living systems, results in an evolutionary advantage of actively moving systems such as ABPs over non-motile systems, which rely on thermal diffusion only. It is an established fact that within confined systems in a stationary state, the activity of ABPs generates density profiles that are enhanced in regions of low activity, which is thus referred to as ‘anti-chemotaxis’. This would suggest that a rather complex sensoric subsystem and information processing is a precondition to recognize and navigate towards a food source. We demonstrate in this work that in non-stationary setups, for instance as a result of short bursts of fuel/food, ABPs do in fact exhibit chemotactic behavior. In direct competition with inactive, but otherwise identical Brownian particles (BPs), the ABPs are shown to fetch a larger amount of food. We discuss this result based on simple physical arguments. From the biological perspective, the ability of primitive entities to move in direct response to the available amount of external energy would, even in absence of any sensoric devices, encompass an evolutionary advantage.
  • Item
    A Versatile Surface Bioengineering Strategy Based on Mussel-Inspired and Bioclickable Peptide Mimic
    ([Beijing] : China Association for Science and Technology, 2020) Xiao, Yu; Wang, Wenxuan; Tian, Xiaohua; Tan, Xing; Yang, Tong; Gao, Peng; Xiong, Kaiqing; Tu, Qiufen; Wang, Miao; Maitz, Manfred F.; Huang, Nan; Pan, Guoqing; Yang, Zhilu
    In this work, we present a versatile surface engineering strategy by the combination of mussel adhesive peptide mimicking and bioorthogonal click chemistry. The main idea reflected in this work derived from a novel mussel-inspired peptide mimic with a bioclickable azide group (i.e., DOPA4-azide). Similar to the adhesion mechanism of the mussel foot protein (i.e., covalent/noncovalent comediated surface adhesion), the bioinspired and bioclickable peptide mimic DOPA4-azide enables stable binding on a broad range of materials, such as metallic, inorganic, and organic polymer substrates. In addition to the material universality, the azide residues of DOPA4-azide are also capable of a specific conjugation of dibenzylcyclooctyne- (DBCO-) modified bioactive ligands through bioorthogonal click reaction in a second step. To demonstrate the applicability of this strategy for diversified biofunctionalization, we bioorthogonally conjugated several typical bioactive molecules with DBCO functionalization on different substrates to fabricate functional surfaces which fulfil essential requirements of biomedically used implants. For instance, antibiofouling, antibacterial, and antithrombogenic properties could be easily applied to the relevant biomaterial surfaces, by grafting antifouling polymer, antibacterial peptide, and NO-generating catalyst, respectively. Overall, the novel surface bioengineering strategy has shown broad applicability for both the types of substrate materials and the expected biofunctionalities. Conceivably, the “clean” molecular modification of bioorthogonal chemistry and the universality of mussel-inspired surface adhesion may synergically provide a versatile surface bioengineering strategy for a wide range of biomedical materials.
  • Item
    Endothelium-Mimicking Multifunctional Coating Modified Cardiovascular Stents via a Stepwise Metal-Catechol-(Amine) Surface Engineering Strategy
    (Washington, DC [u.a.] : American Association for the Advancement of Science, 2020) Yang, Ying; Gao, Peng; Wang, Juan; Tu, Qiufen; Bai, Long; Xiong, Kaiqin; Qiu, Hua; Zhao, Xin; Maitz, Manfred F.; Wang, Huaiyu; Li, Xiangyang; Zhao, Qiang; Xiao, Yin; Huang, Nan; Yang, Zhilu
    Stenting is currently the major therapeutic treatment for cardiovascular diseases. However, the nonbiogenic metal stents are inclined to trigger a cascade of cellular and molecular events including inflammatory response, thrombogenic reactions, smooth muscle cell hyperproliferation accompanied by the delayed arterial healing, and poor reendothelialization, thus leading to restenosis along with late stent thrombosis. To address prevalence critical problems, we present an endothelium-mimicking coating capable of rapid regeneration of a competently functioning new endothelial layer on stents through a stepwise metal (copper)-catechol-(amine) (MCA) surface chemistry strategy, leading to combinatorial endothelium-like functions with glutathione peroxidase-like catalytic activity and surface heparinization. Apart from the stable nitric oxide (NO) generating rate at the physiological level (2:2 × 10a'10 mol/cm2/min lasting for 60 days), this proposed strategy could also generate abundant amine groups for allowing a high heparin conjugation efficacy up to ∼1 μg/cm2, which is considerably higher than most of the conventional heparinized surfaces. The resultant coating could create an ideal microenvironment for bringing in enhanced antithrombogenicity, anti-inflammation, anti-proliferation of smooth muscle cells, re-endothelialization by regulating relevant gene expressions, hence preventing restenosis in vivo. We envision that the stepwise MCA coating strategy would facilitate the surface endothelium-mimicking engineering of vascular stents and be therefore helpful in the clinic to reduce complications associated with stenosis. © 2020 American Association for the Advancement of Science. All rights reserved.
  • Item
    Precursor-surface interactions revealed during plasma-enhanced atomic layer deposition of metal oxide thin films by in-situ spectroscopic ellipsometry
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2020) Kilic, Ufuk; Mock, Alyssa; Sekora, Derek; Gilbert, Simeon; Valloppilly, Shah; Melendez, Giselle; Ianno, Natale; Langell, Marjorie; Schubert, Eva; Schubert, Mathias
    We find that a five-phase (substrate, mixed native oxide and roughness interface layer, metal oxide thin film layer, surface ligand layer, ambient) model with two-dynamic (metal oxide thin film layer thickness and surface ligand layer void fraction) parameters (dynamic dual box model) is sufficient to explain in-situ spectroscopic ellipsometry data measured within and across multiple cycles during plasma-enhanced atomic layer deposition of metal oxide thin films. We demonstrate our dynamic dual box model for analysis of in-situ spectroscopic ellipsometry data in the photon energy range of 0.7–3.4 eV measured with time resolution of few seconds over large numbers of cycles during the growth of titanium oxide (TiO2) and tungsten oxide (WO3) thin films, as examples. We observe cyclic surface roughening with fast kinetics and subsequent roughness reduction with slow kinetics, upon cyclic exposure to precursor materials, leading to oscillations of the metal thin film thickness with small but positive growth per cycle. We explain the cyclic surface roughening by precursor-surface interactions leading to defect creation, and subsequent surface restructuring. Atomic force microscopic images before and after growth, x-ray photoelectron spectroscopy, and x-ray diffraction investigations confirm structural and chemical properties of our thin films. Our proposed dynamic dual box model may be generally applicable to monitor and control metal oxide growth in atomic layer deposition, and we include data for SiO2 and Al2O3 as further examples.
  • Item
    Universal size ratios of Gaussian polymers with complex architecture: radius of gyration vs hydrodynamic radius
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2020) Haydukivska, Khristine; Blavatska, Viktoria; Paturej, Jarosław
    We study the impact of arm architecture of polymers with a single branch point on their structure in solvents. Many physical properties of polymer liquids strongly dependent on the size and shape measures of individual macromolecules, which in turn are determined by their topology. Here, we use combination of analytical theory, based on path integration method, and molecular dynamics simulations to study structural properties of complex Gaussian polymers containing fc linear branches and fr closed loops grafted to the central core. We determine size measures such as the gyration radius Rg and the hydrodynamic radii RH, and obtain the estimates for the size ratio Rg/RH with its dependence on the functionality f=fc+fr of grafted polymers. In particular, we obtain the quantitative estimate of the degree of compactification of these polymers with increasing number of closed loops fr as compared to linear or star-shape molecules of the same total molecular weight. Numerical simulations corroborate theoretical prediction that Rg/RH decreases towards unity with increasing f. These findings provide qualitative description of polymers with complex architecture in θ solvents.