Search Results

Now showing 1 - 5 of 5
  • Item
    Building Hierarchical Martensite
    (Weinheim : Wiley-VCH, 2020) Schwabe, Stefan; Niemann, Robert; Backen, Anja; Wolf, Daniel; Damm, Christine; Walter, Tina; Seiner, Hanuš; Heczko, Oleg; Nielsch, Kornelius; Fähler, Sebastian
    Martensitic materials show a complex, hierarchical microstructure containing structural domains separated by various types of twin boundaries. Several concepts exist to describe this microstructure on each length scale, however, there is no comprehensive approach bridging the whole range from the nano- up to the macroscopic scale. Here, it is described for a Ni-Mn-based Heusler alloy how this hierarchical microstructure is built from scratch with just one key parameter: the tetragonal distortion of the basic building block at the atomic level. Based on this initial block, five successive levels of nested building blocks are introduced. At each level, a larger building block is formed by twinning the preceding one to minimize the relevant energy contributions locally. This naturally explains the coexistence of different types of twin boundaries. The scale-bridging approach of nested building blocks is compared with experiments in real and reciprocal space. The approach of nested building blocks is versatile as it can be applied to the broad class of functional materials exhibiting diffusionless transformations. © 2020 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH
  • Item
    Antifreezing Hydrogel with High Zinc Reversibility for Flexible and Durable Aqueous Batteries by Cooperative Hydrated Cations
    (Weinheim : Wiley-VCH, 2020) Zhu, Minshen; Wang, Xiaojie; Tang, Hongmei; Wang, Jiawei; Hao, Qi; Liu, Lixiang; Li, Yang; Zhang, Kai; Schmidt, Oliver G.
    Hydrogels are widely used in flexible aqueous batteries due to their liquid-like ion transportation abilities and solid-like mechanical properties. Their potential applications in flexible and wearable electronics introduce a fundamental challenge: how to lower the freezing point of hydrogels to preserve these merits without sacrificing hydrogels' basic advantages in low cost and high safety. Moreover, zinc as an ideal anode in aqueous batteries suffers from low reversibility because of the formation of insulative byproducts, which is mainly caused by hydrogen evolution via extensive hydration of zinc ions. This, in principle, requires the suppression of hydration, which induces an undesirable increase in the freezing point of hydrogels. Here, it is demonstrated that cooperatively hydrated cations, zinc and lithium ions in hydrogels, are very effective in addressing the above challenges. This simple but unique hydrogel not only enables a 98% capacity retention upon cooling down to −20 °C from room temperature but also allows a near 100% capacity retention with >99.5% Coulombic efficiency over 500 cycles at −20 °C. In addition, the strengthened mechanical properties of the hydrogel under subzero temperatures result in excellent durability under various harsh deformations after the freezing process. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    TiNb2O7 and VNB9O25 of ReO3 type in hybrid Mg−Li batteries: Electrochemical and interfacial insights
    (Washington, DC : American Chemical Society, 2020) Maletti, Sebastian; Herzog-Arbeitman, Abraham; Oswald, Steffen; Senyshyn, Anatoliy; Giebeler, Lars; Mikhailova, Daria
    As one of the beyond-lithium battery concepts, hybrid metal-ion batteries have aroused growing interest. Here, TiNb2O7 (TNO) and VNb9O25 (VNO) materials were prepared using a high-temperature solid-state synthesis and, for the first time, comprehensively examined in hybrid Mg−Li batteries. Both materials adopt ReO3-related structures differing in the interconnection of oxygen polyhedra and the resulting guest ion diffusion paths. We show applicability of the compounds in hybrid cells providing capacities comparable to those reached in Li-ion batteries (LIBs) at room temperature (220 mAh g−1 for TNO and 150 mAh g−1 for VNO, both at 0.1 C), their operability in the temperature range between −10 and 60 °C, and even better capacity retention than in pure LIBs, rendering this hybrid technology superior for long-term application. Post mortem X-ray photoelectron spectroscopy reveals a cathode−electrolyte interface as a key ingredient for providing excellent electrochemical stability of the hybrid battery. A significant contribution of the intercalation pseudocapacitance to charge storage was observed for both materials in Li- and Mg−Li batteries. However, the pseudocapacitive part is higher for TNO than for VNO, which correlates with structural distinctions, providing better accessibility of diffusion pathways for guest cations in TNO and, as a consequence, a higher ionic transport within the crystal structure. © 2020 American Chemical Society
  • Item
    XPS chemical state analysis of sputter depth profiling measurements for annealed TiAl-SiO2 and TiAl-W layer stacks
    (Chichester [u.a.] : Wiley, 2020) Oswald, Steffen; Lattner, Eric; Seifert, Marietta
    For the application of surface acoustic wave sensors at high temperatures, both a high-temperature stable piezoelectric substrate and a suitable metallization for the electrodes are needed. Our current attempt is to use TiAl thin films as metallization because this material is also known to be high temperature stable. In this study, Ti/Al multilayers and Ti-Al alloy layers were prepared in combination with an SiO2 cover layer or a W barrier layer at the interface to the substrate (thermally oxidized Si or Ca3TaGa3Si2O14) as an oxidation protection. To form the high-temperature stable γ-TiAl phase and to test the thermal stability of the layer systems, thermal treatments were done in vacuum at several temperatures. We used X-ray photoelectron spectroscopy (XPS) sputter depth-profiling to investigate the film composition and oxidation behavior. In this paper, we demonstrate how the semiautomatic peak fitting can help to extract beside the elemental information also the chemical information from the measured depth profiles. © 2020 The Authors. Surface and Interface Analysis published by John Wiley & Sons Ltd
  • Item
    Charge transfer characteristics of F6TCNNQ–gold interface
    (Chichester [u.a.] : Wiley, 2020) Kuhrt, Robert; Hantusch, Martin; Knupfer, Martin; Büchner, Bernd
    The metal–organic interface between polycrystalline gold and hexafluorotetracyanonaphthoquinodimethane (F6TCNNQ) was investigated by photoelectron spectroscopy with the focus on the charge transfer characteristics from the metal to the molecule. The valence levels, as well as the core levels of the heterojunction, indicate a full electron transfer and a change in the chemical environment. The changes are observed in the first F6TCNNQ layers, whereas for further film growth, only neutral F6TCNNQ molecules could be detected. New occupied states below the Fermi level were observed in the valence levels, indicating a lowest unoccupied molecular orbital (LUMO) occupation due to the charge transfer. A fitting of the spectra reveals the presence of a neutral and a charged F6TCNNQ molecules, but no further species were present.