Search Results

Now showing 1 - 3 of 3
  • Item
    Fabrication of a new photo-sensitized solar cell using TiO2\ZnO Nanocomposite synthesized via a modified sol-gel Technique
    (London [u.a.] : Institute of Physics, 2020) Mahdi Rheima, Ahmed; Hadi Hussain, Dhia; Jawad Abed, Hayder
    The current research synthesized was carried out using a modified solgel Technique for titanium dioxide ( TiO2) and zinc oxide (ZnO) nanocomposite. The morphology and optical properties of the synthesized nanocomposite were examined using a transmission electron microscope ( TEM) and UV-Visible spectroscopy. The structure of the synthesized nanocomposite was proved using X-ray Diffraction(XRD). The particle size of the ZnO/TiO2 nanocomposites was found to be range between 11 to 27.37 nm. The product of TEM has proof of the inclusion in the ZnO matrix of spherical TiO2particles. Also found were TiO2 sections attached to the ZnO-like rodlike particles., the ZnO/TiO2 Nanocomposites had better optical absorbing properties. The nanocomposite has been used to create a new photosensitizer solar cell with the efficiency of energy conversion of approximately 4.6%, using (E)-ethyl 4- ((4-nitrobenzylidene)) aminobenzoate as organic photo-sensitized (OPS) by (ITO/TiO2\ZnO nanocomposite/POS/iodine/silver (Ag) nanofilm/ITO).
  • Item
    Advances in electron channelling contrast imaging and electron backscatter diffraction for imaging and analysis of structural defects in the scanning electron microscope
    (London [u.a.] : Institute of Physics, 2020) Trager-Cowan, C.; Alasmari, A.; Avis, W.; Bruckbauer, J.; Edwards, P.R.; Hourahine, B.; Kraeusel, S.; Kusch, G.; Jablon, B.M.; Johnston, R.; Martin, R.W.; Mcdermott, R.; Naresh-Kumar, G.; Nouf-Allehiani, M.; Pascal, E.; Thomson, D.; Vespucci, S.; Mingard, K.; Parbrook, P.J.; Smith, M.D.; Enslin, J.; Mehnke, F.; Kneissl, M.; Kuhn, C.; Wernicke, T.; Knauer, A.; Hagedorn, S.; Walde, S.; Weyers, M.; Coulon, P.-M.; Shields, P.A.; Zhang, Y.; Jiu, L.; Gong, Y.; Smith, R.M.; Wang, T.; Winkelmann, A.
    In this article we describe the scanning electron microscopy (SEM) techniques of electron channelling contrast imaging and electron backscatter diffraction. These techniques provide information on crystal structure, crystal misorientation, grain boundaries, strain and structural defects on length scales from tens of nanometres to tens of micrometres. Here we report on the imaging and analysis of dislocations and sub-grains in nitride semiconductor thin films (GaN and AlN) and tungsten carbide-cobalt (WC-Co) hard metals. Our aim is to illustrate the capability of these techniques for investigating structural defects in the SEM and the benefits of combining these diffraction-based imaging techniques.
  • Item
    Ambient noise analysis for characterizing sub-surface dynamic parameters
    (London [u.a.] : Institute of Physics, 2020) Setiawan, B.; Saidi, T.; Yuliannur, A.; Polom, U.; Ramadhansyah, P.J.; Ali, M.I.
    Ambient noise analysis of horizontal to vertical spectral ratio (HVSR) method has been used widely to provide reliable estimates of the site fundamental frequency and to constrain the inversion of near-surface shear wave velocity. The present paper focuses on the site measurement using the aforementioned analysis by means of the HVSR method for characterizing sub-surface dynamic parameters in the City of Banda Aceh, Indonesia. A Guralp CMG-6TD broadband seismometer was used in this study to cover a wide frequency range from 0.033 Hz to 50 Hz in standard operation. The instrument was deployed at two different sites (i.e. Location#1 of Blang Padang and Location#2 of Stadion Dirmutala) in the City of Banda Aceh for at least 2 hours for ambient noise recording. This continuous of 2 hours' microtremor time series was separated into 30 minutes record from which the site fundamental frequency and shear wave velocity of the measured site were deduced. The later sub-surface dynamic parameter was validated using another technique of reflection seismic. This investigation suggests the fundamental frequency of 0.45 Hz at Location#1 and of 0.65 Hz at Location#2. The estimated shear wave velocity of the top 30 m, Vs,30 of this investigation is 165 m/s at Location#1 and 156 m/s at Location#2. Both the site fundamental frequency and shear wave velocity are important for infrastructure design in the high seismic region of Banda Aceh, Indonesia.