Search Results

Now showing 1 - 10 of 24
  • Item
    Chronostratigraphy of silt-dominated Pleistocene periglacial slope deposits on Mt. Ślęża (SW, Poland): Palaeoenvironmental and pedogenic significance
    (New York, NY [u.a.] : Elsevier, 2020) Waroszewski, Jaroslaw; Sprafke, Tobias; Kabala, Cezary; Musztyfaga, Elżbieta; Kot, Aleksandra; Tsukamoto, Sumiko; Frechen, Manfred
    Slope deposits with aeolian silt admixture are a widespread parent material of soils in the temperate zone but may be neglected when rates of soil production are quantified. The concept of periglacial cover beds differentiates slope deposits with or without aeolian silt admixture; yet there is a remaining debate on processes and the timing of their formation. A previous study done by us at Mt. Ślęża, SW Poland, concluded that slope deposits with variable aeolian silt admixture, or its lack, have a significant influence on the pathway of soil formation. The present work builds upon this finding, by adding further granulometric and micromorphological data from three representative profiles along a toposequence, in order to refine our understanding of local slope deposits and soil formation. Additionally, seven numerical ages using luminescence dating provide a chronological framework for our reconstructions and allow linking the forming processes of these pedosedimentary records to regional palaeoenvironmental conditions. The oldest aeolian deposits are of Middle Pleistocene age (>280 ± 19 ka) with interlayered palaeosol (marine isotope stage [MIS] 9 or older). Late Pleistocene slope deposits encompass the maximum loess thickness and are dated to MIS 2. Luminescence ages from the upper layers indicate shallow reworking, which we tentatively correlate to the Younger Dryas (YD). Two profiles with thick loess mantles have strong clay illuviation features, presumably formed during the Holocene. However, weak clay illuviation in the third profile with a thin loess mantle (having an age of YD) over granite regolith seems to have occurred before the Holocene, as only fragmented clay coatings (probably MIS 2 pedogenesis) could be found. © 2020 The Authors
  • Item
    A post-IR IRSL chronology and dust mass accumulation rates of the Nosak loess-palaeosol sequence in northeastern Serbia
    (Oxford [u.a.] : Wiley-Blackwell, 2020) Perić, Zoran M.; Marković, Slobodan B.; Sipos, György; Gavrilov, Milivoj B.; Thiel, Christine; Zeeden, Christian; Murray, Andrew S.
    In the Middle Danube Basin, Quaternary deposits are widely distributed in the Vojvodina region where they cover about 95% of the area. Major research during the last two decades has been focused on loess deposits in the Vojvodina region. During this period, loess in the Vojvodina region has become one of the most important Pleistocene European continental climatic and environmental records. Here we present the dating results of 15 samples taken from the Nosak loess-palaeosol sequence in northeastern Serbia in order to establish a chronology over the last three glacial–interglacial cycles. We use the pIRIR290 signal of the 4–11 μm polymineral grains. The calculated ages are within the error limits partially consistent with the proposed multi-millennial chronostratigraphy for Serbian loess. The average mass accumulation rate for the last three glacial–interglacial cycles is 265 g m−2 a−1, which is in agreement with the values of most sites in the Carpathian Basin. Our results indicate a highly variable deposition rate of loess, especially during the MIS 3 and MIS 6 stages, which is contrary to most studies conducted in Serbia where linear sedimentation rates were assumed. © 2020 The Authors. Boreas published by John Wiley & Sons Ltd on behalf of The Boreas Collegium
  • Item
    A new method for correcting temperature log profiles in low-enthalpy plays
    (Berlin ; Heidelberg [u.a.] : Springer Open, 2020) Schumacher, Sandra; Moeck, Inga
    Temperature logs recorded shortly after drilling operations can be the only temperature information from deep wells. However, these measurements are still influenced by the thermal disturbance caused by drilling and therefore do not represent true rock temperatures. The magnitude of the thermal disturbance is dependent on many factors such as drilling time, logging procedure or mud temperature. However, often old well reports lack this crucial information so that conventional corrections on temperature logs cannot be performed. This impedes the re-evaluation of well data for new exploration purposes, e.g. for geothermal resources. This study presents a new method to correct log temperatures in low-enthalpy play types which only requires a knowledge of the final depth of the well as an input parameter. The method was developed and verified using existing well data from an intracratonic sedimentary basin, the eastern part of the North German Basin. It can be transferred to other basins with little or no adjustment. © 2020, The Author(s).
  • Item
    Predictability and controlling factors of overpressure in the North Alpine Foreland Basin, SE Germany: an interdisciplinary post-drill analysis of the Geretsried GEN-1 deep geothermal well
    (Berlin ; Heidelberg [u.a.] : Springer Open, 2020) Drews, Michael C.; Hofstetter, Peter; Zosseder, Kai; Shipilin, Vladimir; Stollhofen, Harald
    The North Alpine Foreland Basin in SE Germany is Germany’s most active deep geothermal province. However, in its southern and eastern part the basin is considerably overpressured, which is a significant challenge for drilling deep geothermal wells. In this study, we combine drilling data and velocity-based pore pressure analyses with 3D basin modeling to assess the predictability and controlling factors of overpressure in the sub-regional context (area of 80 km × 50 km) around the Geretsried GEN-1 well, a deep geothermal exploration well in the southern part of the North Alpine Foreland Basin in SE Germany. Drilling data and velocity-based pore pressure analyses indicate overpressure maxima in the Lower Oligocene (Rupelian and Schoeneck Formation) and up to mild overpressure in the Upper Oligocene (Chattian) and Upper Cretaceous, except for the hydrostatically pressured northwestern part of the study area. 3D basin modeling calibrated to four hydrocarbon wells surrounding the Geretsried GEN-1 well demonstrates the dominating role of disequilibrium compaction and low permeability units related to overpressure generation in the North Alpine Foreland Basin. However, secondary overpressure generation mechanisms are likely contributing. Also, the impact of Upper Cretaceous shales, which are eroded in the northwestern part of the study area, on overpressure maintenance is investigated. The calibrated basin model is tested against the drilling history and velocity (VSP) data-based pore pressure estimate of the Geretsried GEN-1 well and reveals that pore pressure prediction is generally possible using 3D basin modeling in the North Alpine Foreland Basin, but should be improved with more detailed analysis of lateral drainage systems and facies variations in the future. The results of the study are of relevance to future well planning and drilling as well as to geomechanical modeling of subsurface stresses and deep geothermal production in the North Alpine Foreland Basin. © 2020, The Author(s).
  • Item
    Probability of success studies for geothermal projects in clastic reservoirs: From subsurface data to geological risk analysis
    (Amsterdam [u.a.] : Elsevier Science, 2020) Schumacher, Sandra; Pierau, Roberto; Wirth, Wolfgang
    In the realisation of a geothermal project, an important step is the quantification of the geological risk of a well not achieving the economically necessary cut-off values with respect to temperature and flowrate/drawdown. In this paper, we present a new method for calculating this risk via a probability of success study by using all available types of hydraulic data, including porosity values derived from core samples or borehole logs. This method has been developed for geothermal projects in fluvial sandstones of the North German Basin but can be applied to any clastic, not fracture-dominated reservoir worldwide. © 2019 The Authors
  • Item
    S-wave seismic imaging of near-surface sediments using tailored processing strategies
    (Amsterdam [u.a.] : Elsevier Science, 2020) Burschil, Thomas; Buness, Hermann
    Reflection seismic imaging using horizontally-polarized S-waves (SH) can increase resolution and it could be cost-efficient compared to the common use of P-waves. However, since S-wave application often delivers varying data quality, appropriate processing schemes are required for particular imaging and interpretation purposes. In this paper, we present four tailored processing strategies that are applied to SH-wave data acquired in an overdeepened Quaternary basin in the Alpine foreland, the Tannwald Basin. The applied processing schemes consist of (1) processing using a short automatic gain control window that enhances structural details and highlights small-scale structures, (2) offset restriction indicating that relative small offsets are sufficient for adequate imaging, which offers reduced field operation costs, (3) coherency-enhancement that reveals large-scale structures for interpretation, and (4) adapted amplitude scaling that enables structural comparison of P-wave and S-wave seismic sections. With respect to P-wave data measured on the same profile, we demonstrate the benefits of the S-wave seismic reflection method. P-waves offer robust imaging results, but S-waves double the resolution, better depict shallow reflections, and may image reflectors in areas where the P-wave struggles. At least for the Tannwald Basin, S-wave imaging is also more cost-efficient than P-wave imaging. © 2020 The Authors
  • Item
    Non-remote reference noise cancellation - using reference data in the presence of surface-NMR signals
    (Amsterdam [u.a.] : Elsevier Science, 2020) Müller-Petke, Mike
    Surface-NMR measurements commonly suffer from low signal-to-noise ratios. In recent years, with the introduction of multi-channel surface-NMR instruments, the technique of remote-reference noise cancellation (RNC) was developed and significantly improved the applicability of surface-NMR. The current formulation of RNC requires a reference loop to be placed a remote distance from the transmitter loop such that no NMR signal is recorded. Reference loops placed at non-remote distances have been envisaged to provide both improved noise cancellation performance and field efficiency; however, the concept has not been previously applied because the theoretical framework was missing. In this paper, the theoretical framework is presented. It is demonstrated that reference loops placed at non-remote distances provide superior noise cancellation performance. Considerations for placing the reference loop relative to the transmitter loop are provided, and the theoretical framework is evaluated based on a semi-synthetic example using real field noise and synthetic surface-NMR data. © 2020
  • Item
    Evaluation of spectral induced polarization field measurements in time and frequency domain
    (Amsterdam [u.a.] : Elsevier Science, 2020) Martin, Tina; Günther, Thomas; Orozco, Adrian Flores; Dahlin, Torleif
    Spectral induced polarization (SIP) measurements have been demonstrated to correlate with important parameters in hydrogeological and environmental investigations. Although SIP measurements were often collected in the frequency domain (FDIP), recent developments have demonstrated the capabilities to solve for the frequency-dependence of the complex conductivity through measurements collected in the time domain (TDIP). Therefore, the aim of our field investigations is a comparison of the measured frequency-dependence at a broad frequency range resolved through FDIP and TDIP. In contrast to previous studies, we conducted measurements with different instruments and measuring technologies for both FDIP and TDIP. This allows for investigating the robustness of different measurements and assessing various sources of errors, for the assessment of the advantages and drawbacks from different measuring techniques. Our results demonstrate that data collected through different instruments are consistent. Apparent resistivity measurements as well as the inversion results revealed quantitatively the same values for all instruments. The measurements of the IP effect are also comparable, particularly FDIP readings in the low frequencies (< 10 Hz) revealed to be quantitatively the same for different instruments. TDIP measurements are consistent for data collected with both devices. As expected, the spatial distribution of the values is also consistent for low frequency data (in FDIP) and late times measurements in TDIP (> 0.1 s). However, data quality for higher frequencies in FDIP (i.e., early times in TDIP) show larger variations, which reflects the differences between the instruments to deal with the electromagnetic contamination of the IP data. Concluded in general, the different instruments and measuring techniques can provide consistent responses for varying signal-to-noise ratio and measuring configurations. © 2020 The Authors
  • Item
    Comparison of novel semi-airborne electromagnetic data with multi-scale geophysical, petrophysical and geological data from Schleiz, Germany
    (Amsterdam [u.a.] : Elsevier Science, 2020) Steuer, Annika; Smirnova, Maria; Becken, Michael; Schiffler, Markus; Günther, Thomas; Rochlitz, Raphael; Yogeshwar, Pritam; Mörbe, Wiebke; Siemon, Bernhard; Costabel, Stephan; Preugschat, Benedikt; Ibs-von Seht, Malte; Zampa, Luigi Sante; Müller, Franz
    In the framework of the Deep Electromagnetic Sounding for Mineral EXploration (DESMEX) project, we carried out multiple geophysical surveys from regional to local scales in a former mining area in the state of Thuringia, Germany. We prove the applicability of newly developed semi-airborne electromagnetic (EM) systems for mineral exploration by cross-validating inversion results with those of established airborne and ground-based investigation techniques. In addition, supporting petrophysical and geological information to our geophysical measurements allowed the synthesis of all datasets over multiple scales. An initial regional-scale reconnaissance survey was performed with BGR's standard helicopter-borne geophysical system deployed with frequency-domain electromagnetic (HEM), magnetic and radiometric sensors. In addition to geological considerations, the HEM results served as base-line information for the selection of an optimal location for the intermediate-scale semi-airborne EM experiments. The semi-airborne surveys utilized long grounded transmitters and two independent airborne receiver instruments: induction coil magnetometers and SQUID sensors. Due to the limited investigation depth of the HEM method, local-scale electrical resistivity tomography (ERT) and long-offset transient electromagnetic (LOTEM) measurements were carried out on a reference profile, enabling the validation of inversion results at greater depths. The comparison of all inversion results provided a consistent overall resistivity distribution. It further confirmed that both semi-airborne receiver instruments achieve the bandwidth and sensitivity required for the investigation of the resistivity structure down to 1 km depth and therewith the detection of deeply seated earth resources. A 3D geological model, lithological and geophysical borehole logs as well as petrophysical investigations were integrated to interpret of the geophysical results. Distinct highly-conductive anomalies with resistivities of less than 10 Om were identified as alum shales over all scales. Apart from that, the petrophysical investigations exhibited that correlating geophysical and geological information using only one single parameter, such as the electrical resistivity, is hardly possible. Therefore, we developed a first approach based on clustering methods and self-organizing maps (SOMs) that allowed us to assign geological units at the surface to a given combination of geophysical and petrophysical parameters, obtained on different scales. © 2020 The Authors
  • Item
    Monitoring freshwater–saltwater interfaces with SAMOS – installation effects on data and inversion
    (Oxford : Wiley, 2020) Ronczka, Mathias; Günther, Thomas; Grinat, Michael; Wiederhold, Helga
    A major problem for the freshwater supply of coastal regions is the intrusion of saltwater into aquifers. Due to extensive extraction of freshwater to suffice increasing drinking water demands and/or in periods of reduced groundwater recharge, the equilibrium state may be disturbed. The result is an upconing or movement of the fresh–saline groundwater interface, which reduces the local drinking water resources at coastal regions or islands. The saltwater monitoring system (SAMOS) is a vertical electrode chain installed in a backfilled borehole. It provides a solution to observe the transition zone in detail, both temporally and spatially. We present monitoring data of the first year from three locations - with different geological conditions that show disturbances in the resistivity distribution that result from the drilling processes. A clayey backfilling, for example, can lead to beam-like artefacts, and a mixed fluid within the backfilling changes its bulk resistivity, both leading to misinterpretations. We performed data inversion under cylindrically symmetrical conditions in full-space in order to separate these resistivity artefacts from the undisturbed background. Data inversion reveals that it is possible to separate drilling effects on the resistivity distribution from the undisturbed background. Thus, an interpretation of the natural transition zones can be made immediately after the installation. © 2020 The Authors. Near Surface Geophysics published by John Wiley & Sons Ltd on behalf of European Association of Geoscientists and Engineers.