Search Results

Now showing 1 - 4 of 4
  • Item
    Thermal annealing to influence the vapor sensing behavior of co-continuous poly(lactic acid)/polystyrene/multiwalled carbon nanotube composites
    (Amsterdam [u.a.] : Elsevier Science, 2020) Li, Yilong; Pionteck, Jürgen; Pötschke, Petra; Voit, Brigitte
    With the main purpose of being used as vapor leakage detector, the volatile organic compound (VOC) vapor sensing properties of conductive polymer blend composites were studied. Poly(lactic acid)/polystyrene/multi-walled carbon nanotube (PLA/PS/MWCNT) based conductive polymer composites (CPCs) in which the polymer components exhibit different interactions with the vapors, were prepared by melt mixing. CPCs with a blend composition of 50/50 wt% resulted in the finest co-continuous structure and selective MWCNT localization in PLA. Therefore, these composites were selected for sensor tests. Thermal annealing was applied aiming to maintain the blend structure but improving the sensing reversibility of CPC sensors towards high vapor concentrations. Different sensing protocols were applied using acetone (good solvent for PS and PLA) and cyclohexane (good solvent for PS but poor solvent for PLA) vapors. Increasing acetone vapor concentration resulted in increased relative resistance change (Rrel) of CPCs. Saturated cyclohexane vapor resulted in lower response than nearly saturated acetone vapor. The thermal annealing at 150 °C did not change the blend morphology but increased the PLA crystallinity, making the CPC sensors more resistant to vapor stimulation, resulting in lower Rrel but better reversibility after vapor exposure.
  • Item
    Transparent model concrete with tunable rheology for investigating flow and particle-migration during transport in pipes
    (Amsterdam [u.a.] : Elsevier Science, 2020) Auernhammer, Günter K.; Fataei, Shirin; Haustein, Martin A.; Patel, Himanshu P.; Schwarze, Rüdiger; Secrieru, Egor; Mechtcherine, Viktor
    The article describes the adaption and properties of a model concrete for detailed flow studies. To adapt the yield stress and plastic viscosity of the model concrete to the corresponding rheological properties of real concrete, the model concrete is made of a mixture of glass beads and a non-Newtonian fluid. The refractive index of the non-Newtonian fluid is adjusted to the refractive index of the glass beads by the addition of a further constituent. The rheological properties of the model concrete are characterised by measurements in concrete rheometers. Finally, the first exemplary results from experiments with the model concrete are presented, which give incipient impressions of the complex internal dynamics in flowing concrete.
  • Item
    Phase and grain size engineering in Ge-Sb-Te-O by alloying with La-Sr-Mn-O towards improved material properties
    (Oxford : Elsevier Science, 2020) Kraft, Nikolas; Wang, Guoxiang; Bryja, Hagen; Prager, Andrea; Griebel, Jan; Lotnyk, Andriy
    Ge-Sb-Te alloys are promising materials for non-volatile memory applications. Alloying of the materials with various elements is considered as prospective approach to enhance material properties. This work reports on the preparation and characterization of pure Ge-Sb-Te-O (GSTO) and alloyed with La-Sr-Mn-O (LSMO) thin films. Thermal heating of amorphous thin films to different temperatures show distinct crystallization behavior. A general trend is the decrease in the size of GSTO crystallites and the suppression in the formation of stable trigonal GSTO phase with increasing content of LSMO. Microstructural studies by transmission electron microscopy show the formation of metastable GSTO nanocrystallites dispersed in the amorphous matrix. Analysis of local chemical bonding by X-ray spectroscopy reveal the presence of different oxides in the GSTO-LSMO composites. Moreover, the composites with a high LSMO content exhibit higher crystallization temperature and significant larger sheet resistance in amorphous and crystalline phase, while a memory device made of GSTO-LSMO alloy reveals bipolar switching and synaptic behavior. In addition, the amount of LSMO in GSTO-LSMO thin films influences their optical properties and band gap. Overall, the results of this work reveal the highly promising potential of GSTO-LSMO nanocomposites for data storage and reconfigurable photonic applications as well as neuro-inspired computing.
  • Item
    Functional relationship of particulate matter (PM) emissions, animal species, and moisture content during manure application
    (Amsterdam [u.a.] : Elsevier Science, 2020) Kabelitz, Tina; Ammon, Christian; Funk, Roger; Münch, Steffen; Biniasch, Oliver; Nübel, Ulrich; Thiel, Nadine; Rösler, Uwe; Siller, Paul; Amon, Barbara; Aarnink, André J.A.; Amon, Thomas
    Livestock manure is recycled to agricultural land as organic fertilizer. Due to the extensive usage of antibiotics in conventional animal farming, antibiotic-resistant bacteria are highly prevalent in feces and manure. The spread of wind-driven particulate matter (PM) with potentially associated harmful bacteria through manure application may pose a threat to environmental and human health. We studied whether PM was aerosolized during the application of solid and dried livestock manure and the functional relationship between PM release, manure dry matter content (DM), treatment and animal species. In parallel, manure and resulting PM were investigated for the survival of pathogenic and antibiotic-resistant bacterial species. The results showed that from manure with a higher DM smaller particles were generated and more PM was emitted. A positive correlation between manure DM and PM aerosolization rate was observed. There was a species-dependent critical dryness level (poultry: 60% DM, pig: 80% DM) where manure began to release PM into the environment. The maximum PM emission potentials were 1 and 3 kg t−1 of applied poultry and pig manure, respectively. Dried manure and resulting PM contained strongly reduced amounts of investigated pathogenic and antibiotic-resistant microorganisms compared to fresh samples. An optimal manure DM regarding low PM emissions and reduced pathogen viability was defined from our results, which was 55–70% DM for poultry manure and 75–85% DM for pig manure. The novel findings of this study increase our detailed understanding and basic knowledge on manure PM emissions and enable optimization of manure management, aiming a manure DM that reduces PM emissions and pathogenic release into the environment.