Search Results

Now showing 1 - 10 of 29
  • Item
    Ammonia and greenhouse gas emissions from slurry storage : A review
    (Amsterdam [u.a.] : Elsevier, 2020) Kupper, Thomas; Häni, Christoph; Neftel, Albrecht; Kincaid, Chris; Bühler, Marcel; Amon, Barbara; VanderZaag, Andrew
    Storage of slurry is an important emission source for ammonia (NH3), nitrous oxide (N2O), methane (CH4), carbon dioxide (CO2) and hydrogen sulfide (H2S) from livestock production. Therefore, this study collected published emission data from stored cattle and pig slurry to determine baseline emission values and emission changes due to slurry treatment and coverage of stores. Emission data were collected from 120 papers yielding 711 records of measurements conducted at farm-, pilot- and laboratory-scale. The emission data reported in a multitude of units were standardized and compiled in a database. Descriptive statistics of the data from untreated slurry stored uncovered revealed a large variability in emissions for all gases. To determine baseline emissions, average values based on a weighting of the emission data according to the season and the duration of the emission measurements were constructed using the data from farm-scale and pilot-scale studies. Baseline emissions for cattle and pig slurry stored uncovered were calculated. When possible, it was further distinguished between storage in tanks without slurry treatment and storage in lagoons which implies solid-liquid separation and biological treatment. The baseline emissions on an area or volume basis are: for NH3: 0.12 g m−2 h-1 and 0.15 g m−2 h-1 for cattle and pig slurry stored in lagoons, and 0.08 g m−2 h-1 and 0.24 g m−2 h-1 for cattle and pig slurry stored in tanks; for N2O: 0.0003 g m−2 h-1 for cattle slurry stored in lagoons, and 0.002 g m−2 h-1 for both slurry types stored in tanks; for CH4: 0.95 g m-3 h-1 and 3.5 g m-3 h-1 for cattle and pig slurry stored in lagoons, and 0.58 g m-3 h-1 and 0.68 g m-3 h-1 for cattle and pig slurry stored in tanks; for CO2: 6.6 g m−2 h-1 and 0.3 g m−2 h-1 for cattle and pig slurry stored in lagoons, and 8.0 g m−2 h-1 for both slurry types stored in tanks; for H2S: 0.04 g m−2 h-1 and 0.01 g m−2 h-1 for cattle and pig slurry stored in lagoons. Related to total ammoniacal nitrogen (TAN), baseline emissions for tanks are 16% and 15% of TAN for cattle and pig slurry, respectively. Emissions of N2O and CH4 relative to nitrogen (N) and volatile solids (VS) are 0.13% of N and 0.10% of N and 2.9% of VS and 4.7% of VS for cattle and pig slurry, respectively. Total greenhouse gas emissions from slurry stores are dominated by CH4. The records on slurry treatment using acidification show a reduction of NH3 and CH4 emissions during storage while an increase occurs for N2O and a minor change for CO2 as compared to untreated slurry. Solid-liquid separation causes higher losses for NH3 and a reduction in CH4, N2O and CO2 emissions. Anaerobically digested slurry shows higher emissions during storage for NH3 while losses tend to be lower for CH4 and little changes occur for N2O and CO2 compared to untreated slurry. All cover types are found to be efficient for emission mitigation of NH3 from stores. The N2O emissions increase in many cases due to coverage. Lower CH4 emissions occur for impermeable covers as compared to uncovered slurry storage while for permeable covers the effect is unclear or emissions tend to increase. Limited and inconsistent data regarding emission changes with covering stores are available for CO2 and H2S. The compiled data provide a basis for improving emission inventories and highlight the need for further research to reduce uncertainty and fill data gaps regarding emissions from slurry storage.
  • Item
    Data on single pulse fs laser induced submicron bubbles in the subsurface region of soda-lime glass
    (Amsterdam [u.a.] : Elsevier, 2020) Lai, Shengying; Ehrhardt, Martin; Lorenz, Pierre; Lu, Jian; Han, Bing; Zimmer, Klaus
    Submicron bubble formation in the subsurface range of soda-lime glass is investigated. The bubbles are induced by single femtosecond laser pulse irradiation with the wavelength of λ = 775 nm, the pulse duration of tp = 150 fs and the laser beam diameter of ∼12 μm. The data shows the changes of the morphologies of the soda-lime glass after laser irradiation with different pulse energy. Moreover, the data shows the detail of the cross-section view of the bubble during the Focused ion beam (FIB) cutting. It is found that the bubbles can be formed in a rather narrow pulse energy range with the bubbles in the size of 300 nm ∼3 μm which is much smaller than the laser beam diameter. Data presented in this article are related to the research article “Submicron bubbles/voids formation in the subsurface region of soda-lime glass by single pulse fs laser-induced spallation” [1]. © 2020
  • Item
    Silica/gold nanoplatform combined with a thermosensitive gel for imaging-guided interventional therapy in PDX of pancreatic cancer
    (Amsterdam [u.a.] : Elsevier, 2020) Xinga, Lingxi; Lib, Xin; Xingd, Zehua; Lie, Fan; Shenb, Mingwu; Wanga, Hong; Shib, Xiangyang; Du, Lianfang
    Imaging-guided interventional therapy is a promising means of minimally invasive and targeted drug delivery for patients with advanced pancreatic cancer. The effectiveness of the method depends on clear imaging and complete removal of cancer cells, especially peripheral infiltration and distant metastasis, to prevent recurrence. We synthesized hollow mesoporous silica-based nanoparticles, Gem-PFH-Au star-HMS-IGF1, with gemcitabine (Gem) and perfluorohexane (PFH) encapsulated internally, gold nanostars (Au NSs) and insulin-like growth factor-1 (IGF1) modified outwardly, to enhance multimode ultrasound (US)/computed tomography (CT)/photoacoustic (PA)/thermal imaging, guide photothermal therapy, and evaluate the effect in real time. We also prepared a type of thermosensitive gel that solidified at body temperature to facilitate the controlled release of Gem and achieve a single-administration interventional therapy. A patient-derived xenograft (PDX) mouse model was established in this study. The PDX was precisely ablated by photothermal therapy under the guidance of US/CT/PA imaging, and the residual pancreatic cancer cells were completely inhibited by Gem to prevent recurrence. This strategy ingeniously simulated the approach of surgical resection and postoperative chemotherapy in clinical procedures to treat malignancy and paves the way for interventional therapy. © 2019 The Authors
  • Item
    Static and dynamic 3D culture of neural precursor cells on macroporous cryogel microcarriers
    (Amsterdam [u.a.] : Elsevier, 2020) Newland, Ben; Ehret, Fanny; Hoppe, Franziska; Eigel, Dimitri; Pette, Dagmar; Newland, Heike; Welzel, Petra B.; Kempermann, Gerd; Werner, Carsten
    Neural precursor cells have been much studied to further our understanding of the far-reaching and controversial question of adult neurogenesis. Currently, differentiation of primary neural precursor cells from the mouse dentate gyrus via 2-dimentional in vitro culture yields low numbers of neurons, a major hindrance to the field of study. 3-dimentional “neurosphere” culture allows better 3D cell-cell contact, but control over cell differentiation is poor because nutrition and oxygen restrictions at the core of the sphere causes spontaneous differentiation, predominantly to glial cells, not neurons. Our group has developed macroporous scaffolds, which overcome the above-mentioned problems, allowing long-term culture of neural stem cells, which can be differentiated into a much higher yield of neurons. Herein we describe a method for culturing neural precursor cells on RGD peptide functionalized-heparin containing cryogel scaffolds, either in standard non-adherent well-plates (static culture) or in spinner flasks (dynamic culture). This method includes: • The synthesis and characterization of heparin based microcarriers. • A “static” 3D culture method for that does not require spinner flask equipment. • “Dynamic” culture in which cell loaded microcarriers are transferred to a spinner flask. © 2020 The Authors
  • Item
    Laser induced diffuse reflectance imaging – Monte Carlo simulation of backscattering measured on the surface
    (Amsterdam [u.a.] : Elsevier, 2020) Baranyai, László
    The Monte Carlo simulation algorithm of photon trajectory computation is implemented in object oriented R code. Diffuse reflectance, also called backscattering, is modeled in semi-infinite homogeneous media. Spatial photon flux leaving the surface of the media is collected. The profile of intensity along radii relative to the incident point is used to simulate measurement of computer vision systems. Four optical parameters of the media are used: absorption coefficient, scattering coefficient, anisotropy factor and refractive index. Five parameters are used to describe configuration of the vision system: number of photons, radius of circular light beam, limiting energy level of photons, radius of observed area, spatial resolution of the vision system. • The incident angle of the light beam is included in the photon launch procedure. Initial direction is typically assumed to be normal with x,y,z coordinates of 0,0,1. In the proposed modification, initial move vector is calculated based on the incident angle and refractive index of the media. Additionally, elliptic distortion of the circular light beam on the surface is calculated based on the incident angle. • Photon flux leaving media through the surface is corrected with Lambertian method to measure intensity captured by an imaging device in normal position. • The software implementing the method is written in R language, the R code is available as standard package.
  • Item
    Influence of nanobody binding on fluorescence emission, mobility, and organization of GFP-tagged proteins
    (Amsterdam [u.a.] : Elsevier, 2020) Schneider, Falk; Sych, Taras; Eggeling, Christian; Sezgin, Erdinc
    Advanced fluorescence microscopy studies require specific and monovalent molecular labeling with bright and photostable fluorophores. This necessity led to the widespread use of fluorescently labeled nanobodies against commonly employed fluorescent proteins (FPs). However, very little is known how these nanobodies influence their target molecules. Here, we tested commercially available nanobodies and observed clear changes of the fluorescence properties, mobility and organization of green fluorescent protein (GFP) tagged proteins after labeling with the anti-GFP nanobody. Intriguingly, we did not observe any co-diffusion of fluorescently labeled nanobodies with the GFP-labeled proteins. Our results suggest significant binding of the nanobodies to a non-emissive, likely oligomerized, form of the FPs, promoting disassembly into monomeric form after binding. Our findings have significant implications on the application of nanobodies and GFP labeling for studying dynamic and quantitative protein organization in the plasma membrane of living cells using advanced imaging techniques.
  • Item
    The impact of climate conditions on economic production. Evidence from a global panel of regions
    (Amsterdam [u.a.] : Elsevier, 2020) Kalkuhl, Matthias; Wenz, Leonie
    We present a novel data set of subnational economic output, Gross Regional Product (GRP), for more than 1500 regions in 77 countries that allows us to empirically estimate historic climate impacts at different time scales. Employing annual panel models, long-difference regressions and cross-sectional regressions, we identify effects on productivity levels and productivity growth. We do not find evidence for permanent growth rate impacts but we find robust evidence that temperature affects productivity levels considerably. An increase in global mean surface temperature by about 3.5°C until the end of the century would reduce global output by 7–14% in 2100, with even higher damages in tropical and poor regions. Updating the DICE damage function with our estimates suggests that the social cost of carbon from temperature-induced productivity losses is on the order of 73–142$/tCO2 in 2020, rising to 92–181$/tCO2 in 2030. These numbers exclude non-market damages and damages from extreme weather events or sea-level rise. © 2020 The Authors
  • Item
    Multi-method evidence for when and how climate-related disasters contribute to armed conflict risk
    (Amsterdam [u.a.] : Elsevier, 2020) Ide, Tobias; Brzoska, Michael; Donges, Jonathan F.; Schleussner, Carl-Friedrich
    Climate-related disasters are among the most societally disruptive impacts of anthropogenic climate change. Their potential impact on the risk of armed conflict is heavily debated in the context of the security implications of climate change. Yet, evidence for such climate-conflict-disaster links remains limited and contested. One reason for this is that existing studies do not triangulate insights from different methods and pay little attention to relevant context factors and especially causal pathways. By combining statistical approaches with systematic evidence from QCA and qualitative case studies in an innovative multi-method research design, we show that climate-related disasters increase the risk of armed conflict onset. This link is highly context-dependent and we find that countries with large populations, political exclusion of ethnic groups, and a low level of human development are particularly vulnerable. For such countries, almost one third of all conflict onsets over the 1980-2016 period have been preceded by a disaster within 7 days. The robustness of the effect is reduced for longer time spans. Case study evidence points to improved opportunity structures for armed groups rather than aggravated grievances as the main mechanism connecting disasters and conflict onset. © 2020 The Authors
  • Item
    Sustainable food protein supply reconciling human and ecosystem health: A Leibniz Position
    (Amsterdam [u.a.] : Elsevier, 2020) Weindl, Isabelle; Ost, Mario; Wiedmer, Petra; Schreiner, Monika; Neugart, Susanne; Klopsch, Rebecca; Kühnhold, Holger; Kloas, Werner; Henkel, Ina M.; Schlüter, Oliver; Bußler, Sara; Bellingrath-Kimura, Sonoko D.; Ma, Hua; Grune, Tilman; Rolinski, Susanne; Klaus, Susanne
    Many global health risks are related to what and how much we eat. At the same time, the production of food, especially from animal origin, contributes to environmental change at a scale that threatens boundaries of a safe operating space for humanity. Here we outline viable solutions how to reconcile healthy protein consumption and sustainable protein production which requires a solid, interdisciplinary evidence base. We review the role of proteins for human and ecosystem health, including physiological effects of dietary proteins, production potentials from agricultural and aquaculture systems, environmental impacts of protein production, and mitigation potentials of transforming current production systems. Various protein sources from plant and animal origin, including insects and fish, are discussed in the light of their health and environmental implications. Integration of available knowledge is essential to move from a dual problem description (“healthy diets versus environment”) towards approaches that frame the food challenge of reconciling human and ecosystem health in the context of planetary health. This endeavor requires a shifting focus from metrics at the level of macronutrients to whole diets and a better understanding of the full cascade of health effects caused by dietary proteins, including health risks from food-related environmental degradation. © 2020
  • Item
    Measures to increase the nitrogen use efficiency of European agricultural production
    (Amsterdam [u.a.] : Elsevier, 2020) Hutchings, Nicholas J.; Sørensen, Peter; Cordovil, Cláudia M.d.S.; Leip, Adrian; Amon, Barbara
    Inputs of nitrogen to agricultural production systems are necessary to produce food, feed and fibre, but nitrogen (N) losses from those systems represent a waste of a resource and a threat to both the environment and human health. The nitrogen use efficiency (NUE) of an agricultural production system can be seen as an indicator of the balance between benefits and costs of primary food, feed and fibre production. Here, we used modelling to follow the fate of the virgin N input to different production systems (ruminant and granivore meat, dairy, arable), and to estimate their NUE at the system scale. We defined two ruminant meat production systems, depending on whether the land places constraints on farming practices. The other production systems were dairy, granivore and arable production on land without constraints. Two geographic regions were considered: Northern and Southern Europe. Measures to improve NUE were identified and allocated to Low, Medium and High ambition groups, with Low equating to the current situation in Europe for production systems that are broadly following good agricultural practice. The NUE of the production systems was similar to or higher in Southern than Northern Europe, with the maximum technical NUEs if all available measures are implemented were for North and South Europe, respectively, 82% and 92% for arable systems, 71% and 80% for granivores, 50% and 36% for ruminant meat production on constrained land, 53% and 55% for dairy production on unconstrained land and 46% and 62% for ruminant meat production on unconstrained land. The values for NUE found here tend to be higher than reported elsewhere, possibly due to the accounting for long-term residual effects of fertiliser and manure in our method. The greatest increase in NUE with the progressive implementation of higher ambition measures was in unconstrained granivore systems and the least was in constrained ruminant meat systems, reflecting the lower initial NUE of granivore systems and the larger number of measures applicable to confined livestock systems. Our work supports use of NUE as an indicator of the temporal trend in the costs and benefits of existing agricultural production systems, but highlights problems associated with its use as a sustainability criteria for livestock production systems. For arable systems, we consider well-founded the NUE value of 90% above which there is a high risk of soil N depletion, provided many measures to increase NUE are employed. For systems employing fewer measures, we suggest a value of 70% would be more appropriate. We conclude that while it is feasible to calculate the NUE of livestock production systems, the additional complexity required reduces its value as an indicator for benchmarking sustainability in practical agriculture. © 2020 The Authors