Search Results

Now showing 1 - 10 of 35
  • Item
    Results of the third Marine Ice Sheet Model Intercomparison Project (MISMIP+)
    (Katlenburg-Lindau : Copernicus, 2020) Cornford, Stephen L.; Seroussi, Helene; Asay-Davis, Xylar S.; Gudmundsson, G. Hilmar; Arthern, Rob; Borstad, Chris; Christmann, Julia; dos Santos, Thiago Dias; Feldmann, Johannes; Goldberg, Daniel; Hoffman, Matthew J.; Humbert, Angelika; Kleiner, Thomas; Leguy, Gunter; Lipscomb, William H.; Merino, Nacho; Durand, Gaël; Morlighem, Mathieu; Pollard, David; Rückamp, Martin; Williams, C. Rosie; Yu, Hongju
    We present the result of the third Marine Ice Sheet Model Intercomparison Project, MISMIP+. MISMIP+ is intended to be a benchmark for ice-flow models which include fast sliding marine ice streams and floating ice shelves and in particular a treatment of viscous stress that is sufficient to model buttressing, where upstream ice flow is restrained by a downstream ice shelf. A set of idealized experiments first tests that models are able to maintain a steady state with the grounding line located on a retrograde slope due to buttressing and then explore scenarios where a reduction in that buttressing causes ice stream acceleration, thinning, and grounding line retreat. The majority of participating models passed the first test and then produced similar responses to the loss of buttressing. We find that the most important distinction between models in this particular type of simulation is in the treatment of sliding at the bed, with other distinctions - notably the difference between the simpler and more complete treatments of englacial stress but also the differences between numerical methods - taking a secondary role. © 2020 Wolters Kluwer Medknow Publications. All rights reserved.
  • Item
    ISMIP6 Antarctica: A multi-model ensemble of the Antarctic ice sheet evolution over the 21st century
    (Katlenburg-Lindau : Copernicus, 2020) Seroussi, Hélène; Nowicki, Sophie; Payne, Antony J.; Goelzer, Heiko; Lipscomb, William H.; Abe-Ouchi, Ayako; Agosta, Cécile; Albrecht, Torsten; Asay-Davis, Xylar; Barthel, Alice; Calov, Reinhard; Cullather, Richard; Dumas, Christophe; Galton-Fenzi, Benjamin K.; Gladstone, Rupert; Golledge, Nicholas R.; Gregory, Jonathan M.; Greve, Ralf; Hattermann, Tore; Hoffman, Matthew J.; Humbert, Angelika; Huybrechts, Philippe; Jourdain, Nicolas C.; Kleiner, Thomas; Larour, Eric; Leguy, Gunter R.; Lowry, Daniel P.; Little, Chistopher M.; Morlighem, Mathieu; Pattyn, Frank; Pelle, Tyler; Price, Stephen F.; Quiquet, Aurélien; Reese, Ronja; Schlegel, Nicole-Jeanne; Shepherd, Andrew; Simon, Erika; Smith, Robin S.; Straneo, Fiammetta; Sun, Sainan; Trusel, Luke D.; Van Breedam, Jonas; van de Wal, Roderik S. W.; Winkelmann, Ricarda; Zhao, Chen; Zhang, Tong; Zwinger, Thomas
    Ice flow models of the Antarctic ice sheet are commonly used to simulate its future evolution in response to different climate scenarios and assess the mass loss that would contribute to future sea level rise. However, there is currently no consensus on estimates of the future mass balance of the ice sheet, primarily because of differences in the representation of physical processes, forcings employed and initial states of ice sheet models. This study presents results from ice flow model simulations from 13 international groups focusing on the evolution of the Antarctic ice sheet during the period 2015-2100 as part of the Ice Sheet Model Intercomparison for CMIP6 (ISMIP6). They are forced with outputs from a subset of models from the Coupled Model Intercomparison Project Phase 5 (CMIP5), representative of the spread in climate model results. Simulations of the Antarctic ice sheet contribution to sea level rise in response to increased warming during this period varies between 7:8 and 30.0 cm of sea level equivalent (SLE) under Representative Concentration Pathway (RCP) 8.5 scenario forcing. These numbers are relative to a control experiment with constant climate conditions and should therefore be added to the mass loss contribution under climate conditions similar to presentday conditions over the same period. The simulated evolution of the West Antarctic ice sheet varies widely among models, with an overall mass loss, up to 18.0 cm SLE, in response to changes in oceanic conditions. East Antarctica mass change varies between 6:1 and 8.3 cm SLE in the simulations, with a significant increase in surface mass balance outweighing the increased ice discharge under most RCP 8.5 scenario forcings. The inclusion of ice shelf collapse, here assumed to be caused by large amounts of liquid water ponding at the surface of ice shelves, yields an additional simulated mass loss of 28mm compared to simulations without ice shelf collapse. The largest sources of uncertainty come from the climate forcing, the ocean-induced melt rates, the calibration of these melt rates based on oceanic conditions taken outside of ice shelf cavities and the ice sheet dynamic response to these oceanic changes. Results under RCP 2.6 scenario based on two CMIP5 climate models show an additional mass loss of 0 and 3 cm of SLE on average compared to simulations done under present-day conditions for the two CMIP5 forcings used and display limited mass gain in East Antarctica. © Author(s) 2020.
  • Item
    The future sea-level contribution of the Greenland ice sheet: A multi-model ensemble study of ISMIP6
    (Katlenburg-Lindau : Copernicus, 2020) Goelzer, Heiko; Nowicki, Sophie; Payne, Anthony; Larour, Eric; Seroussi, Helene; Lipscomb, William H.; Gregory, Jonathan; Abe-Ouchi, Ayako; Shepherd, Andrew; Simon, Erika; Agosta, Cécile; Alexander, Patrick; Aschwanden, Andy; Barthel, Alice; Calov, Reinhard; Chambers, Christopher; Choi, Youngmin; Cuzzone, Joshua; Dumas, Christophe; Edwards, Tamsin; Felikson, Denis; Fettweis, Xavier; Golledge, Nicholas R.; Greve, Ralf; Humbert, Angelika; Huybrechts, Philippe; Le clec'h, Sebastien; Lee, Victoria; Leguy, Gunter; Little, Chris; Lowry, Daniel P.; Morlighem, Mathieu; Nias, Isabel; Quiquet, Aurelien; Rückamp, Martin; Schlegel, Nicole-Jeanne; Slater, Donald A.; Smith, Robin S.; Straneo, Fiammetta; Tarasov, Lev; van de Wal, Roderik; van den Broeke, Michiel
    The Greenland ice sheet is one of the largest contributors to global mean sea-level rise today and is expected to continue to lose mass as the Arctic continues to warm. The two predominant mass loss mechanisms are increased surface meltwater run-off and mass loss associated with the retreat of marine-terminating outlet glaciers. In this paper we use a large ensemble of Greenland ice sheet models forced by output from a representative subset of the Coupled Model Intercomparison Project (CMIP5) global climate models to project ice sheet changes and sea-level rise contributions over the 21st century. The simulations are part of the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6).We estimate the sea-level contribution together with uncertainties due to future climate forcing, ice sheet model formulations and ocean forcing for the two greenhouse gas concentration scenarios RCP8.5 and RCP2.6. The results indicate that the Greenland ice sheet will continue to lose mass in both scenarios until 2100, with contributions of 90-50 and 32-17mm to sea-level rise for RCP8.5 and RCP2.6, respectively. The largest mass loss is expected from the south-west of Greenland, which is governed by surface mass balance changes, continuing what is already observed today. Because the contributions are calculated against an unforced control experiment, these numbers do not include any committed mass loss, i.e. mass loss that would occur over the coming century if the climate forcing remained constant. Under RCP8.5 forcing, ice sheet model uncertainty explains an ensemble spread of 40 mm, while climate model uncertainty and ocean forcing uncertainty account for a spread of 36 and 19 mm, respectively. Apart from those formally derived uncertainty ranges, the largest gap in our knowledge is about the physical understanding and implementation of the calving process, i.e. the interaction of the ice sheet with the ocean. © Author(s) 2020.
  • Item
    Glacial-cycle simulations of the Antarctic Ice Sheet with the Parallel Ice Sheet Model (PISM) – Part 1: Boundary conditions and climatic forcing
    (Katlenburg-Lindau : Copernicus, 2020) Albrecht, Torsten; Winkelmann, Ricarda; Levermann, Anders
    Simulations of the glacial–interglacial history of the Antarctic Ice Sheet provide insights into dynamic threshold behavior and estimates of the ice sheet's contributions to global sea-level changes for the past, present and future. However, boundary conditions are weakly constrained, in particular at the interface of the ice sheet and the bedrock. Also climatic forcing covering the last glacial cycles is uncertain, as it is based on sparse proxy data. We use the Parallel Ice Sheet Model (PISM) to investigate the dynamic effects of different choices of input data, e.g., for modern basal heat flux or reconstructions of past changes of sea level and surface temperature. As computational resources are limited, glacial-cycle simulations are performed using a comparably coarse model grid of 16 km and various parameterizations, e.g., for basal sliding, iceberg calving, or for past variations in precipitation and ocean temperatures. In this study we evaluate the model's transient sensitivity to corresponding parameter choices and to different boundary conditions over the last two glacial cycles and provide estimates of involved uncertainties. We also discuss isolated and combined effects of climate and sea-level forcing. Hence, this study serves as a “cookbook” for the growing community of PISM users and paleo-ice sheet modelers in general. For each of the different model uncertainties with regard to climatic forcing, ice and Earth dynamics, and basal processes, we select one representative model parameter that captures relevant uncertainties and motivates corresponding parameter ranges that bound the observed ice volume at present. The four selected parameters are systematically varied in a parameter ensemble analysis, which is described in a companion paper.
  • Item
    The role of history and strength of the oceanic forcing in sea level projections from Antarctica with the Parallel Ice Sheet Model
    (Katlenburg-Lindau : Copernicus, 2020) Reese, Ronja; Levermann, Anders; Albrecht, Torsten; Seroussi, Hélène; Winkelmann, Ricarda
    Mass loss from the Antarctic Ice Sheet constitutes the largest uncertainty in projections of future sea level rise. Ocean-driven melting underneath the floating ice shelves and subsequent acceleration of the inland ice streams are the major reasons for currently observed mass loss from Antarctica and are expected to become more important in the future. Here we show that for projections of future mass loss from the Antarctic Ice Sheet, it is essential (1) to better constrain the sensitivity of sub-shelf melt rates to ocean warming and (2) to include the historic trajectory of the ice sheet. In particular, we find that while the ice sheet response in simulations using the Parallel Ice Sheet Model is comparable to the median response of models in three Antarctic Ice Sheet Intercomparison projects – initMIP, LARMIP-2 and ISMIP6 – conducted with a range of ice sheet models, the projected 21st century sea level contribution differs significantly depending on these two factors. For the highest emission scenario RCP8.5, this leads to projected ice loss ranging from 1.4 to 4.0 cm of sea level equivalent in simulations in which ISMIP6 ocean forcing drives the PICO ocean box model where parameter tuning leads to a comparably low sub-shelf melt sensitivity and in which no surface forcing is applied. This is opposed to a likely range of 9.1 to 35.8 cm using the exact same initial setup, but emulated from the LARMIP-2 experiments with a higher melt sensitivity, even though both projects use forcing from climate models and melt rates are calibrated with previous oceanographic studies. Furthermore, using two initial states, one with a previous historic simulation from 1850 to 2014 and one starting from a steady state, we show that while differences between the ice sheet configurations in 2015 seem marginal at first sight, the historic simulation increases the susceptibility of the ice sheet to ocean warming, thereby increasing mass loss from 2015 to 2100 by 5 % to 50 %. Hindcasting past ice sheet changes with numerical models would thus provide valuable tools to better constrain projections. Our results emphasize that the uncertainty that arises from the forcing is of the same order of magnitude as the ice dynamic response for future sea level projections.
  • Item
    Glacial-cycle simulations of the Antarctic Ice Sheet with the Parallel Ice Sheet Model (PISM) – Part 2: Parameter ensemble analysis
    (Katlenburg-Lindau : Copernicus, 2020) Albrecht, Torsten; Winkelmann, Ricarda; Levermann, Anders
    The Parallel Ice Sheet Model (PISM) is applied to the Antarctic Ice Sheet over the last two glacial cycles (≈210 000 years) with a resolution of 16 km. An ensemble of 256 model runs is analyzed in which four relevant model parameters have been systematically varied using full-factorial parameter sampling. Parameters and plausible parameter ranges have been identified in a companion paper (Albrecht et al., 2020) and are associated with ice dynamics, climatic forcing, basal sliding and bed deformation and represent distinct classes of model uncertainties. The model is scored against both modern and geologic data, including reconstructed grounding-line locations, elevation–age data, ice thickness, surface velocities and uplift rates. An aggregated score is computed for each ensemble member that measures the overall model–data misfit, including measurement uncertainty in terms of a Gaussian error model (Briggs and Tarasov, 2013). The statistical method used to analyze the ensemble simulation results follows closely the simple averaging method described in Pollard et al. (2016). This analysis reveals clusters of best-fit parameter combinations, and hence a likely range of relevant model and boundary parameters, rather than individual best-fit parameters. The ensemble of reconstructed histories of Antarctic Ice Sheet volumes provides a score-weighted likely range of sea-level contributions since the Last Glacial Maximum (LGM) of 9.4±4.1 m (or 6.5±2.0×106km3 ), which is at the upper range of most previous studies. The last deglaciation occurs in all ensemble simulations after around 12 000 years before present and hence after the meltwater pulse 1A (MWP1a). Our ensemble analysis also provides an estimate of parametric uncertainty bounds for the present-day state that can be used for PISM projections of future sea-level contributions from the Antarctic Ice Sheet.
  • Item
    Increasing the spatial resolution of cloud property retrievals from Meteosat SEVIRI by use of its high-resolution visible channel: Evaluation of candidate approaches with MODIS observations
    (Katlenburg-Lindau : Copernicus, 2020) Werner, Frank; Deneke, Hartwig
    This study presents and evaluates several candidate approaches for downscaling observations from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) in order to increase the horizontal resolution of subsequent cloud optical thickness (τ) and effective droplet radius (reff) retrievals from the native ≈ 3km×3km spatial resolution of the narrowband channels to ≈ 1km×1km. These methods make use of SEVIRI's coincident broadband high-resolution visible (HRV) channel. For four example cloud fields, the reliability of each downscaling algorithm is evaluated by means of collocated 1km×1km MODIS radiances, which are reprojected to the horizontal grid of the HRV channel and serve as reference for the evaluation. By using these radiances, smoothed with the modulation transfer function of the native SEVIRI channels, as retrieval input, the accuracy at the SEVIRI standard resolution can be evaluated and an objective comparison of the accuracy of the different downscaling algorithms can be made. For the example scenes considered in this study, it is shown that neglecting high-frequency variations below the SEVIRI standard resolution results in significant random absolute deviations of the retrieved τ and reff of up to ≈ 14 and ≈ 6μm, respectively, as well as biases. By error propagation, this also negatively impacts the reliability of the subsequent calculation of liquid water path (WL) and cloud droplet number concentration (ND), which exhibit deviations of up to ≈ 89gm-2 and ≈ 177cm-3, respectively. For τ , these deviations can be almost completely mitigated by the use of the HRV channel as a physical constraint and by applying most of the presented downscaling schemes. Uncertainties in retrieved reff at the native SEVIRI resolution are smaller, and the improvements from downscaling the observations are less obvious than for τ. Nonetheless, the right choice of downscaling scheme yields noticeable improvements in the retrieved reff. Furthermore, the improved reliability in retrieved cloud products results in significantly reduced uncertainties in derived WL and ND. In particular, one downscaling approach provides clear improvements for all cloud products compared to those obtained from SEVIRI's standard resolution and is recommended for future downscaling endeavors. This work advances efforts to mitigate impacts of scale mismatches among channels of multiresolution instruments on cloud retrievals. © Author(s) 2020.
  • Item
    Nano-hygroscopicity tandem differential mobility analyzer (nano-HTDMA) for investigating hygroscopic properties of sub-10nm aerosol nanoparticles
    (Katlenburg-Lindau : Copernicus, 2020) Lei, Ting; Ma, Nan; Hong, Juan; Tuch, Thomas; Wang, Xin; Wang, Zhibin; Pöhlker, Mira; Ge, Maofa; Wang, Weigang; Mikhailov, Eugene; Hoffmann, Thorsten; Pöschl, Ulrich; Su, Hang; Wiedensohler, Alfred; Cheng, Yafang
    Interactions between water and nanoparticles are relevant for atmospheric multiphase processes, physical chemistry, and materials science. Current knowledge of the hygroscopic and related physicochemical properties of nanoparticles, however, is restricted by the limitations of the available measurement techniques. Here, we present the design and performance of a nano-hygroscopicity tandem differential mobility analyzer (nano-HTDMA) apparatus that enables high accuracy and precision in hygroscopic growth measurements of aerosol nanoparticles with diameters less than 10 nm. Detailed methods of calibration and validation are provided. Besides maintaining accurate and stable sheath and aerosol flow rates (1 %), high accuracy of the differential mobility analyzer (DMA) voltage (0:1 %) in the range of 0-50V is crucial for achieving accurate sizing and small sizing offsets between the two DMAs (1:4 %). To maintain a stable relative humidity (RH), the humidification system and the second DMA are placed in a well-insulated and air conditioner housing (0:1 K). We also tested and discussed different ways of preventing predeliquescence in the second DMA. Our measurement results for ammonium sulfate nanoparticles are in good agreement with Biskos et al. (2006b), with no significant size effect on the deliquescence and efflorescence relative humidity (DRH and ERH, respectively) at diameters down to 6 nm. For sodium sulfate nanoparticles, however, we find a pronounced size dependence of DRH and ERH between 20 and 6 nm nanoparticles. © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.
  • Item
    Application of TXRF in monitoring trace metals in particulate matter and cloud water
    (Katlenburg-Lindau : Copernicus, 2020) Fomba, Khanneh Wadinga; Deabji, Nabil; Barcha, Sayf El Islam; Ouchen, Ibrahim; Elbaramoussi, El Mehdi; El Moursli, Rajaa Cherkaoui; Harnafi, Mimoun; El Hajjaji, Souad; Mellouki, Abdelwahid; Herrmann, Hartmut
    Trace metals in ambient particulate matter and cloud are considered key elements of atmospheric processes as they affect air quality, environmental ecosystems, and cloud formation. However, they are often available at trace concentrations in these media such that their analysis requires high-precision and sensitive techniques. In this study, different analytical methods were applied to quantify trace metals in particulate matter (PM) samples collected on quartz and polycarbonate filters as well as cloud water, using the Total reflection X-Ray Fluorescence (TXRF) technique. These methods considered the measurement of filter samples directly without and with chemical pretreatment. Direct measurements involved the analysis of PM samples collected on polycarbonate filters and cloud water samples after they are brought onto TXRF carrier substrates. The chemical treatment method involved the assessment of different acid digestion procedures on PM sampled on quartz filters. The solutions applied were reverse aqua regia, nitric acid, and a combination of nitric acid and hydrogen peroxide. The effect of cold-plasma treatment of samples on polycarbonate filters before TXRF measurements was also investigated. Digestion with the reverse aqua regia solution provided lower blanks and higher recovery in comparison to other tested procedures. The detection limits of the elements ranged from 0.3 to 44 ng cm−2. Ca, K, Zn, and Fe showed the highest detection limits of 44, 35, 6, and 1 ng cm−2, while As and Se had the lowest of 0.3 and 0.8 ng cm−2, respectively. The method showed higher recovery for most trace metals when applied to commercially available reference materials and field samples. TXRF measurements showed good agreement with results obtained from ion chromatography measurements for elements such as Ca and K. Cold-plasma treatment did not significantly lead to an increase in the detected concentration, and the results were element specific. Baking of the quartz filters prior to sampling showed a reduction of more than 20 % of the filter blanks for elements such as V, Sr, Mn, Zn, and Sb. The methods were applied successfully on ambient particulate matter and cloud water samples collected from the Atlas Mohammed V station in Morocco and the Cape Verde Atmospheric Observatory. The obtained concentrations were within the range reported using different techniques from similar remote and background regions elsewhere, especially for elements of anthropogenic origins such as V, Pb, and Zn with concentrations of up to 10, 19, and 28 ng m−3, respectively. Enrichment factor analysis indicated that crustal matter dominated the abundance of most of the elements, while anthropogenic activities also contributed to the abundance of elements such as Sb, Se, and Pb. The results confirm that TXRF is a useful complementary sensitive technique for trace metal analysis of particulate matter in the microgram range as well as in cloud water droplets.
  • Item
    Characterization and first results from LACIS-T : a moist-air wind tunnel to study aerosol–cloud–turbulence interactions
    (Katlenburg-Lindau : Copernicus, 2020) Niedermeier, Dennis; Voigtländer, Jens; Schmalfuß, Silvio; Busch, Daniel; Schumacher, Jörg; Shaw, Raymond A.; Stratmann, Frank
    The interactions between turbulence and cloud microphysical processes have been investigated primarily through numerical simulation and field measurements over the last 10 years. However, only in the laboratory we can be confident in our knowledge of initial and boundary conditions and are able to measure under statistically stationary and repeatable conditions. In the scope of this paper, we present a unique turbulent moist-air wind tunnel, called the Turbulent Leipzig Aerosol Cloud Interaction Simulator (LACIS-T) which has been developed at TROPOS in order to study cloud physical processes in general and interactions between turbulence and cloud microphysical processes in particular. The investigations take place under well-defined and reproducible turbulent and thermodynamic conditions covering the temperature range of warm, mixed-phase and cold clouds (25∘C>T>−40∘C ). The continuous-flow design of the facility allows for the investigation of processes occurring on small temporal (up to a few seconds) and spatial scales (micrometer to meter scale) and with a Lagrangian perspective. The here-presented experimental studies using LACIS-T are accompanied and complemented by computational fluid dynamics (CFD) simulations which help us to design experiments as well as to interpret experimental results. In this paper, we will present the fundamental operating principle of LACIS-T, the numerical model, and results concerning the thermodynamic and flow conditions prevailing inside the wind tunnel, combining both characterization measurements and numerical simulations. Finally, the first results are depicted from deliquescence and hygroscopic growth as well as droplet activation and growth experiments. We observe clear indications of the effect of turbulence on the investigated microphysical processes.