Search Results

Now showing 1 - 2 of 2
  • Item
    Friction, abrasion and crack growth behavior of in-situ and ex-situ silica filled rubber composites
    (Basel : MDPI, 2020) Vaikuntam, Sankar Raman; Bhagavatheswaran, Eshwaran Subramani; Xiang, Fei; Wießner, Sven; Heinrich, Gert; Das, Amit; Stöckelhuber, Klaus Werner
    The article focuses on comparing the friction, abrasion, and crack growth behavior of two different kinds of silica-filled tire tread compounds loaded with (a) in-situ generated alkoxide silica and (b) commercial precipitated silica-filled compounds. The rubber matrix consists of solution styrene butadiene rubber polymers (SSBR). The in-situ generated particles are entirely different in filler morphology, i.e., in terms of size and physical structure, when compared to the precipitated silica. However, both types of the silicas were identified as amorphous in nature. Influence of filler morphology and surface modification of silica on the end performances of the rubbers like dynamic friction, abrasion index, and fatigue crack propagation were investigated. Compared to precipitated silica composites, in-situ derived silica composites offer better abrasion behavior and improved crack propagation with and without admixture of silane coupling agents. Silane modification, particle morphology, and crosslink density were identified as further vital parameters influencing the investigated rubber properties. © 2020 by the authors.
  • Item
    Quantifying Rate-and Temperature-Dependent Molecular Damage in Elastomer Fracture
    (College Park, Md. : APS, 2020) Slootman, Juliette; Waltz, Victoria; Yeh, C. Joshua; Baumann, Christoph; Göstl, Robert; Comtet, Jean; Creton, Costantino
    Elastomers are highly valued soft materials finding many applications in the engineering and biomedical fields for their ability to stretch reversibly to large deformations. Yet their maximum extensibility is limited by the occurrence of fracture, which is currently still poorly understood. Because of a lack of experimental evidence, current physical models of elastomer fracture describe the rate and temperature dependence of the fracture energy as being solely due to viscoelastic friction, with chemical bond scission at the crack tip assumed to remain constant. Here, by coupling new fluorogenic mechanochemistry with quantitative confocal microscopy mapping, we are able to quantitatively detect, with high spatial resolution and sensitivity, the scission of covalent bonds as ordinary elastomers fracture at different strain rates and temperatures. Our measurements reveal that, in simple networks, bond scission, far from being restricted to a constant level near the crack plane, can both be delocalized over up to hundreds of micrometers and increase by a factor of 100, depending on the temperature and stretch rate. These observations, permitted by the high fluorescence and stability of the mechanophore, point to an intricate coupling between strain-rate-dependent viscous dissipation and strain-dependent irreversible network scission. These findings paint an entirely novel picture of fracture in soft materials, where energy dissipated by covalent bond scission accounts for a much larger fraction of the total fracture energy than previously believed. Our results pioneer the sensitive, quantitative, and spatially resolved detection of bond scission to assess material damage in a variety of soft materials and their applications. © 2020 authors. Published by the American Physical Society.