Search Results

Now showing 1 - 10 of 174
  • Item
    Time-Warping Invariants of Multidimensional Time Series
    (Dordrecht [u.a.] : Springer Science + Business Media B.V., 2020) Diehl, Joscha; Ebrahimi-Fard, Kurusch; Tapia, Nikolas
    In data science, one is often confronted with a time series representing measurements of some quantity of interest. Usually, in a first step, features of the time series need to be extracted. These are numerical quantities that aim to succinctly describe the data and to dampen the influence of noise. In some applications, these features are also required to satisfy some invariance properties. In this paper, we concentrate on time-warping invariants. We show that these correspond to a certain family of iterated sums of the increments of the time series, known as quasisymmetric functions in the mathematics literature. We present these invariant features in an algebraic framework, and we develop some of their basic properties. © 2020, The Author(s).
  • Item
    Longtime behavior for a generalized Cahn-Hilliard system with fractional operators
    (Messina : Accademia Peloritana dei Pericolanti, 2020) Colli, Pierluigi; Gilardi, Gianni; Sprekels, Jürgen
    In this contribution, we deal with the longtime behavior of the solutions to the fractional variant of the Cahn-Hilliard system, with possibly singular potentials, that we have recently investigated in the paper Well-posedness and regularity for a generalized fractional Cahn-Hilliard system. More precisely, we study the ω-limit of the phase parameter y and characterize it completely. Our characterization depends on the first eigenvalues λ1≥0 of one of the operators involved: if λ1>0, then the chemical potential μ vanishes at infinity and every element yω of the ω-limit is a stationary solution to the phase equation; if instead λ1=0, then every element yω of the ω-limit satisfies a problem containing a real function μ∞ related to the chemical potential μ. Such a function μ∞ is nonunique and time dependent, in general, as we show by an example. However, we give sufficient conditions for μ∞ to be uniquely determined and constant.
  • Item
    Existence, iteration procedures and directional differentiability for parabolic QVIs
    (Berlin ; Heidelberg : Springer, 2020) Alphonse, Amal; Hintermüller, Michael; Rautenberg, Carlos N.
    We study parabolic quasi-variational inequalities (QVIs) of obstacle type. Under appropriate assumptions on the obstacle mapping, we prove the existence of solutions of such QVIs by two methods: one by time discretisation through elliptic QVIs and the second by iteration through parabolic variational inequalities. Using these results, we show the directional differentiability (in a certain sense) of the solution map which takes the source term of a parabolic QVI into the set of solutions, and we relate this result to the contingent derivative of the aforementioned map. We finish with an example where the obstacle mapping is given by the inverse of a parabolic differential operator.
  • Item
    Experimental proof of Joule heating-induced switched-back regions in OLEDs
    (London : Nature Publishing Group, 2020) Kirch, Anton; Fische, Axel; Liero, Matthias; Fuhrmann, Jürgen; Glitzky, Annegret; Reineke, Sebastian
    Organic light-emitting diodes (OLEDs) have become a major pixel technology in the display sector, with products spanning the entire range of current panel sizes. The ability to freely scale the active area to large and random surfaces paired with flexible substrates provides additional application scenarios for OLEDs in the general lighting, automotive, and signage sectors. These applications require higher brightness and, thus, current density operation compared to the specifications needed for general displays. As extended transparent electrodes pose a significant ohmic resistance, OLEDs suffering from Joule self-heating exhibit spatial inhomogeneities in electrical potential, current density, and hence luminance. In this article, we provide experimental proof of the theoretical prediction that OLEDs will display regions of decreasing luminance with increasing driving current. With a two-dimensional OLED model, we can conclude that these regions are switched back locally in voltage as well as current due to insufficient lateral thermal coupling. Experimentally, we demonstrate this effect in lab-scale devices and derive that it becomes more severe with increasing pixel size, which implies its significance for large-area, high-brightness use cases of OLEDs. Equally, these non-linear switching effects cannot be ignored with respect to the long-term operation and stability of OLEDs; in particular, they might be important for the understanding of sudden-death scenarios. © 2020, The Author(s).
  • Item
    Corrector estimates in homogenization of a nonlinear transmission problem for diffusion equations in connected domains
    (Chichester, West Sussex : Wiley, 2020) Kovtunenko, Victor A.; Reichelt, Sina; Zubkova, Anna V.
    This paper is devoted to the homogenization of a nonlinear transmission problem stated in a two-phase domain. We consider a system of linear diffusion equations defined in a periodic domain consisting of two disjoint phases that are both connected sets separated by a thin interface. Depending on the field variables, at the interface, nonlinear conditions are imposed to describe interface reactions. In the variational setting of the problem, we prove the homogenization theorem and a bidomain averaged model. The periodic unfolding technique is used to obtain the residual error estimate with a first-order corrector. © 2019 The Authors. Mathematical Methods in the Applied Sciences published by John Wiley & Sons Ltd.
  • Item
    Dynamic probabilistic constraints under continuous random distributions
    (Berlin ; Heidelberg : Springer, 2020) González Grandón, T.; Henrion, R.; Pérez-Aros, P.
    The paper investigates analytical properties of dynamic probabilistic constraints (chance constraints). The underlying random distribution is supposed to be continuous. In the first part, a general multistage model with decision rules depending on past observations of the random process is analyzed. Basic properties like (weak sequential) (semi-) continuity of the probability function or existence of solutions are studied. It turns out that the results differ significantly according to whether decision rules are embedded into Lebesgue or Sobolev spaces. In the second part, the simplest meaningful two-stage model with decision rules from L2 is investigated. More specific properties like Lipschitz continuity and differentiability of the probability function are considered. Explicitly verifiable conditions for these properties are provided along with explicit gradient formulae in the Gaussian case. The application of such formulae in the context of necessary optimality conditions is discussed and a concrete identification of solutions presented. © 2020, The Author(s).
  • Item
    Exponential Moments for Planar Tessellations
    (New York, NY [u.a.] : Springer Science + Business Media B.V., 2020) Jahnel, Benedikt; Tóbiás, András
    In this paper we show existence of all exponential moments for the total edge length in a unit disk for a family of planar tessellations based on stationary point processes. Apart from classical tessellations such as the Poisson–Voronoi, Poisson–Delaunay and Poisson line tessellation, we also treat the Johnson–Mehl tessellation, Manhattan grids, nested versions and Palm versions. As part of our proofs, for some planar tessellations, we also derive existence of exponential moments for the number of cells and the number of edges intersecting the unit disk.
  • Item
    Patch-Wise Adaptive Weights Smoothing in R
    (Los Angeles, Calif. : UCLA, Dept. of Statistics, 2020) Polzehl, Jörg; Papafitsoros, Kostas; Tabelow, Karsten
    Image reconstruction from noisy data has a long history of methodological development and is based on a variety of ideas. In this paper we introduce a new method called patch-wise adaptive smoothing, that extends the propagation-separation approach by using comparisons of local patches of image intensities to define local adaptive weighting schemes for an improved balance of reduced variability and bias in the reconstruction result. We present the implementation of the new method in an R package aws and demonstrate its properties on a number of examples in comparison with other state-of-the art image reconstruction methods. © 2020, American Statistical Association. All rights reserved.
  • Item
    Dynamical Phase Transitions for Flows on Finite Graphs
    (New York, NY [u.a.] : Springer Science + Business Media B.V., 2020) Gabrielli, Davide; Renger, D.R. Michiel
    We study the time-averaged flow in a model of particles that randomly hop on a finite directed graph. In the limit as the number of particles and the time window go to infinity but the graph remains finite, the large-deviation rate functional of the average flow is given by a variational formulation involving paths of the density and flow. We give sufficient conditions under which the large deviations of a given time averaged flow is determined by paths that are constant in time. We then consider a class of models on a discrete ring for which it is possible to show that a better strategy is obtained producing a time-dependent path. This phenomenon, called a dynamical phase transition, is known to occur for some particle systems in the hydrodynamic scaling limit, which is thus extended to the setting of a finite graph.
  • Item
    Reconstruction of Quasi-Local Numerical Effective Models from Low-Resolution Measurements
    (New York, NY [u.a.] : Springer Science + Business Media B.V., 2020) Caiazzo, A.; Maier, R.; Peterseim, D.
    We consider the inverse problem of reconstructing an effective model for a prototypical diffusion process in strongly heterogeneous media based on coarse measurements. The approach is motivated by quasi-local numerical effective forward models that are provably reliable beyond periodicity assumptions and scale separation. The goal of this work is to show that an identification of the matrix representation related to these effective models is possible. On the one hand, this provides a reasonable surrogate in cases where a direct reconstruction is unfeasible due to a mismatch between the coarse data scale and the microscopic quantities to be reconstructed. On the other hand, the approach allows us to investigate the requirement for a certain non-locality in the context of numerical homogenization. Algorithmic aspects of the inversion procedure and its performance are illustrated in a series of numerical experiments. © 2020, The Author(s).