Search Results

Now showing 1 - 5 of 5
  • Item
    INSPIRE: A European training network to foster research and training in cardiovascular safety pharmacology
    (Amsterdam : Elsevier B.V., 2020) Guns, P.-J.D.; Guth, B.D.; Braam, S.; Kosmidis, G.; Matsa, E.; Delaunois, A.; Gryshkova, V.; Bernasconi, S.; Knot, H.J.; Shemesh, Y.; Chen, A.; Markert, M.; Fernández, M.A.; Lombardi, D.; Grandmont, C.; Cillero-Pastor, B.; Heeren, R.M.A.; Martinet, W.; Woolard, J.; Skinner, M.; Segers, V.F.M.; Franssen, C.; Van Craenenbroeck, E.M.; Volders, P.G.A.; Pauwelyn, T.; Braeken, D.; Yanez, P.; Correll, K.; Yang, X.; Prior, H.; Kismihók, G.; De Meyer, G.R.Y.; Valentin, J.-P.
    Safety pharmacology is an essential part of drug development aiming to identify, evaluate and investigate undesirable pharmacodynamic properties of a drug primarily prior to clinical trials. In particular, cardiovascular adverse drug reactions (ADR) have halted many drug development programs. Safety pharmacology has successfully implemented a screening strategy to detect cardiovascular liabilities, but there is room for further refinement. In this setting, we present the INSPIRE project, a European Training Network in safety pharmacology for Early Stage Researchers (ESRs), funded by the European Commission's H2020-MSCA-ITN programme. INSPIRE has recruited 15 ESR fellows that will conduct an individual PhD-research project for a period of 36 months. INSPIRE aims to be complementary to ongoing research initiatives. With this as a goal, an inventory of collaborative research initiatives in safety pharmacology was created and the ESR projects have been designed to be complementary to this roadmap. Overall, INSPIRE aims to improve cardiovascular safety evaluation, either by investigating technological innovations or by adding mechanistic insight in emerging safety concerns, as observed in the field of cardio-oncology. Finally, in addition to its hands-on research pillar, INSPIRE will organize a number of summer schools and workshops that will be open to the wider community as well. In summary, INSPIRE aims to foster both research and training in safety pharmacology and hopes to inspire the future generation of safety scientists.
  • Item
    Combining statistical and machine learning methods to explore German students’ attitudes towards ICT in PISA
    (London : Taylor & Francis, 2021) Lezhnina, Olga; Kismihók, Gábor
    In our age of big data and growing computational power, versatility in data analysis is important. This study presents a flexible way to combine statistics and machine learning for data analysis of a large-scale educational survey. The authors used statistical and machine learning methods to explore German students’ attitudes towards information and communication technology (ICT) in relation to mathematical and scientific literacy measured by the Programme for International Student Assessment (PISA) in 2015 and 2018. Implementations of the random forest (RF) algorithm were applied to impute missing data and to predict students’ proficiency levels in mathematics and science. Hierarchical linear models (HLM) were built to explore relationships between attitudes towards ICT and mathematical and scientific literacy with the focus on the nested structure of the data. ICT autonomy was an important variable in RF models, and associations between this attitude and literacy scores in HLM were significant and positive, while for other ICT attitudes the associations were negative (ICT in social interaction) or non-significant (ICT competence and ICT interest). The need for further research on ICT autonomy is discussed, and benefits of combining statistical and machine learning approaches are outlined.
  • Item
    Scholarly event characteristics in four fields of science: a metrics-based analysis
    (Berlin : Springer Nature, 2020) Fathalla, S.; Vahdati, S.; Lange, C.; Auer, Sören
    One of the key channels of scholarly knowledge exchange are scholarly events such as conferences, workshops, symposiums, etc.; such events are especially important and popular in Computer Science, Engineering, and Natural Sciences.However, scholars encounter problems in finding relevant information about upcoming events and statistics on their historic evolution.In order to obtain a better understanding of scholarly event characteristics in four fields of science, we analyzed the metadata of scholarly events of four major fields of science, namely Computer Science, Physics, Engineering, and Mathematics using Scholarly Events Quality Assessment suite, a suite of ten metrics.In particular, we analyzed renowned scholarly events belonging to five sub-fields within Computer Science, namely World Wide Web, Computer Vision, Software Engineering, Data Management, as well as Security and Privacy.This analysis is based on a systematic approach using descriptive statistics as well as exploratory data analysis. The findings are on the one hand interesting to observe the general evolution and success factors of scholarly events; on the other hand, they allow (prospective) event organizers, publishers, and committee members to assess the progress of their event over time and compare it to other events in the same field; and finally, they help researchers to make more informed decisions when selecting suitable venues for presenting their work.Based on these findings, a set of recommendations has been concluded to different stakeholders, involving event organizers, potential authors, proceedings publishers, and sponsors. Our comprehensive dataset of scholarly events of the aforementioned fields is openly available in a semantic format and maintained collaboratively at OpenResearch.org.
  • Item
    A comprehensive quality assessment framework for scientific events
    (Dordrecht [u.a.] : Springer Science + Business Media B.V., 2020) Vahdati, Sahar; Fathalla, Said; Lange, Christoph; Behrend, Andreas; Say, Aysegul; Say, Zeynep; Auer, Sören
    Systematic assessment of scientific events has become increasingly important for research communities. A range of metrics (e.g., citations, h-index) have been developed by different research communities to make such assessments effectual. However, most of the metrics for assessing the quality of less formal publication venues and events have not yet deeply investigated. It is also rather challenging to develop respective metrics because each research community has its own formal and informal rules of communication and quality standards. In this article, we develop a comprehensive framework of assessment metrics for evaluating scientific events and involved stakeholders. The resulting quality metrics are determined with respect to three general categories—events, persons, and bibliometrics. Our assessment methodology is empirically applied to several series of computer science events, such as conferences and workshops, using publicly available data for determining quality metrics. We show that the metrics’ values coincide with the intuitive agreement of the community on its “top conferences”. Our results demonstrate that highly-ranked events share similar profiles, including the provision of outstanding reviews, visiting diverse locations, having reputed people involved, and renowned sponsors.
  • Item
    Analysing the evolution of computer science events leveraging a scholarly knowledge graph: a scientometrics study of top-ranked events in the past decade
    (Dordrecht [u.a.] : Springer Science + Business Media B.V., 2021) Lackner, Arthur; Fathalla, Said; Nayyeri, Mojtaba; Behrend, Andreas; Manthey, Rainer; Auer, Sören; Lehmann, Jens; Vahdati, Sahar
    The publish or perish culture of scholarly communication results in quality and relevance to be are subordinate to quantity. Scientific events such as conferences play an important role in scholarly communication and knowledge exchange. Researchers in many fields, such as computer science, often need to search for events to publish their research results, establish connections for collaborations with other researchers and stay up to date with recent works. Researchers need to have a meta-research understanding of the quality of scientific events to publish in high-quality venues. However, there are many diverse and complex criteria to be explored for the evaluation of events. Thus, finding events with quality-related criteria becomes a time-consuming task for researchers and often results in an experience-based subjective evaluation. OpenResearch.org is a crowd-sourcing platform that provides features to explore previous and upcoming events of computer science, based on a knowledge graph. In this paper, we devise an ontology representing scientific events metadata. Furthermore, we introduce an analytical study of the evolution of Computer Science events leveraging the OpenResearch.org knowledge graph. We identify common characteristics of these events, formalize them, and combine them as a group of metrics. These metrics can be used by potential authors to identify high-quality events. On top of the improved ontology, we analyzed the metadata of renowned conferences in various computer science communities, such as VLDB, ISWC, ESWC, WIMS, and SEMANTiCS, in order to inspect their potential as event metrics.