Search Results

Now showing 1 - 10 of 16
  • Item
    A global analysis of climate-relevant aerosol properties retrieved from the network of Global Atmosphere Watch (GAW) near-surface observatories
    (Katlenburg-Lindau : Copernicus, 2020) Laj, Paolo; Bigi, Alessandro; Rose, Clémence; Andrews, Elisabeth; Lund Myhre, Cathrine; Collaud Coen, Martine; Lin, Yong; Wiedensohler, Alfred; Schulz, Michael; Ogren, John A.; Fiebig, Markus; Prenni, Anthony; Reisen, Fabienne; Romano, Salvatore; Sellegri, Karine; Sharma, Sangeeta; Schauer, Gerhard; Sheridan, Patrick; Sherman, James Patrick; Schütze, Maik; Schwerin, Andreas; Tuch, Thomas; Sohmer, Ralf; Sorribas, Mar; Steinbacher, Martin; Sun, Junying; Titos, Gloria; Toczko, Barbara; Tulet, Pierre; Tunved, Peter; Vakkari, Ville; Velarde, Fernando; Velasquez, Patricio; Villani, Paolo; Vratolis, Sterios; Wang, Sheng-Hsiang; Weinhold, Kay; Gliß, Jonas; Weller, Rolf; Yela, Margarita; Yus-Diez, Jesus; Zdimal, Vladimir; Zieger, Paul; Zikova, Nadezda; Mortier, Augustin; Pandolfi, Marco; Petäja, Tuukka; Kim, Sang-Woo; Aas, Wenche; Putaud, Jean-Philippe; Mayol-Bracero, Olga; Keywood, Melita; Labrador, Lorenzo; Aalto, Pasi; Ahlberg, Erik; Alados Arboledas, Lucas; Alastuey, Andrés; Andrade, Marcos; Artíñano, Begoña; Ausmeel, Stina; Arsov, Todor; Asmi, Eija; Backman, John; Baltensperger, Urs; Bastian, Susanne; Bath, Olaf; Beukes, Johan Paul; Brem, Benjamin T.; Bukowiecki, Nicolas; Conil, Sébastien; Couret, Cedric; Day, Derek; Dayantolis, Wan; Degorska, Anna; Eleftheriadis, Konstantinos; Fetfatzis, Prodromos; Favez, Olivier; Flentje, Harald; Gini, Maria I.; Gregorič, Asta; Gysel-Beer, Martin; Hallar, A. Gannet; Hand, Jenny; Hoffer, Andras; Hueglin, Christoph; Hooda, Rakesh K.; Hyvärinen, Antti; Kalapov, Ivo; Kalivitis, Nikos; Kasper-Giebl, Anne; Kim, Jeong Eun; Kouvarakis, Giorgos; Kranjc, Irena; Krejci, Radovan; Kulmala, Markku; Labuschagne, Casper; Lee, Hae-Jung; Lihavainen, Heikki; Lin, Neng-Huei; Löschau, Gunter; Luoma, Krista; Marinoni, Angela; Martins Dos Santos, Sebastiao; Meinhardt, Frank; Merkel, Maik; Metzger, Jean-Marc; Mihalopoulos, Nikolaos; Nguyen, Nhat Anh; Ondracek, Jakub; Pérez, Noemi; Perrone, Maria Rita; Petit, Jean-Eudes; Picard, David; Pichon, Jean-Marc; Pont, Veronique; Prats, Natalia
    Aerosol particles are essential constituents of the Earth's atmosphere, impacting the earth radiation balance directly by scattering and absorbing solar radiation, and indirectly by acting as cloud condensation nuclei. In contrast to most greenhouse gases, aerosol particles have short atmospheric residence times, resulting in a highly heterogeneous distribution in space and time. There is a clear need to document this variability at regional scale through observations involving, in particular, the in situ near-surface segment of the atmospheric observation system. This paper will provide the widest effort so far to document variability of climate-relevant in situ aerosol properties (namely wavelength dependent particle light scattering and absorption coefficients, particle number concentration and particle number size distribution) from all sites connected to the Global Atmosphere Watch network. High-quality data from almost 90 stations worldwide have been collected and controlled for quality and are reported for a reference year in 2017, providing a very extended and robust view of the variability of these variables worldwide. The range of variability observed worldwide for light scattering and absorption coefficients, single-scattering albedo, and particle number concentration are presented together with preliminary information on their long-term trends and comparison with model simulation for the different stations. The scope of the present paper is also to provide the necessary suite of information, including data provision procedures, quality control and analysis, data policy, and usage of the ground-based aerosol measurement network. It delivers to users of the World Data Centre on Aerosol, the required confidence in data products in the form of a fully characterized value chain, including uncertainty estimation and requirements for contributing to the global climate monitoring system.
  • Item
    Impacts of enhanced weathering on biomass production for negative emission technologies and soil hydrology
    (Katlenburg-Lindau [u.a.] : Copernicus, 2020) De Oliveira Garcia, Wagner; Amann, Thorben; Hartmann, Jens; Karstens, Kristine; Popp, Alexander; Boysen, Lena R.; Smith, Pete; Goll, Daniel
    Limiting global mean temperature changes to well below 2 °C likely requires a rapid and large-scale deployment of negative emission technologies (NETs). Assessments so far have shown a high potential of biomass-based terrestrial NETs, but only a few assessments have included effects of the commonly found nutrient-deficient soils on biomass production. Here, we investigate the deployment of enhanced weathering (EW) to supply nutrients to areas of afforestation-reforestation and naturally growing forests (AR) and bioenergy grasses (BG) that are deficient in phosphorus (P), besides the impacts on soil hydrology. Using stoichiometric ratios and biomass estimates from two established vegetation models, we calculated the nutrient demand of AR and BG. Insufficient geogenic P supply limits C storage in biomass. For a mean P demand by AR and a lowgeogenic-P-supply scenario, AR would sequester 119 Gt C in biomass; for a high-geogenic-P-supply and low-AR-Pdemand scenario, 187 Gt C would be sequestered in biomass; and for a low geogenic P supply and high AR P demand, only 92 GtC would be accumulated by biomass. An average amount of ∼ 150 Gt basalt powder applied for EW would be needed to close global P gaps and completely sequester projected amounts of 190 Gt C during the years 2006-2099 for the mean AR P demand scenario (2-362 Gt basalt powder for the low-AR-P-demand and for the high-AR-P-demand scenarios would be necessary, respectively). The average potential of carbon sequestration by EW until 2099 is ∼ 12 GtC (∼ 0:2-∼ 27 Gt C) for the specified scenarios (excluding additional carbon sequestration via alkalinity production). For BG, 8 kg basaltm2 a1 might, on average, replenish the exported potassium (K) and P by harvest. Using pedotransfer functions, we show that the impacts of basalt powder application on soil hydraulic conductivity and plant-Available water, to close predicted P gaps, would depend on basalt and soil texture, but in general the impacts are marginal. We show that EW could potentially close the projected P gaps of an AR scenario and nutrients exported by BG harvest, which would decrease or replace the use of industrial fertilizers. Besides that, EW ameliorates the soil's capacity to retain nutrients and soil pH and replenish soil nutrient pools. Lastly, EW application could improve plant-Available-water capacity depending on deployed amounts of rock powder - adding a new dimension to the coupling of land-based biomass NETs with EW. © 2020 Royal Society of Chemistry. All rights reserved.
  • Item
    Climate and air quality impacts due to mitigation of non-methane near-term climate forcers
    (Katlenburg-Lindau : EGU, 2020) Allen, Robert J.; Turnock, Steven; Nabat, Pierre; Neubauer, David; Lohmann, Ulrike; Olivié, Dirk; Oshima, Naga; Michou, Martine; Wu, Tongwen; Zhang, Jie; Takemura, Toshihiko; Schulz, Michael; Tsigaridis, Kostas; Bauer, Susanne E.; Emmons, Louisa; Horowitz, Larry; Naik, Vaishali; van Noije, Twan; Bergman, Tommi; Lamarque, Jean-Francois; Zanis, Prodromos; Tegen, Ina; Westervelt, Daniel M.; Le Sager, Philippe; Good, Peter; Shim, Sungbo; O’Connor, Fiona; Akritidis, Dimitris; Georgoulias, Aristeidis K.; Deushi, Makoto; Sentman, Lori T.; John, Jasmin G.; Fujimori, Shinichiro; Collins, William J.
    It is important to understand how future environmental policies will impact both climate change and air pollution. Although targeting near-term climate forcers (NTCFs), defined here as aerosols, tropospheric ozone, and precursor gases, should improve air quality, NTCF reductions will also impact climate. Prior assessments of the impact of NTCF mitigation on air quality and climate have been limited. This is related to the idealized nature of some prior studies, simplified treatment of aerosols and chemically reactive gases, as well as a lack of a sufficiently large number of models to quantify model diversity and robust responses. Here, we quantify the 2015-2055 climate and air quality effects of non-methane NTCFs using nine state-of-the-art chemistry-climate model simulations conducted for the Aerosol and Chemistry Model Intercomparison Project (AerChemMIP). Simulations are driven by two future scenarios featuring similar increases in greenhouse gases (GHGs) but with weak (SSP3-7.0) versus strong (SSP3-7.0-lowNTCF) levels of air quality control measures. As SSP3-7.0 lacks climate policy and has the highest levels of NTCFs, our results (e.g., surface warming) represent an upper bound. Unsurprisingly, we find significant improvements in air quality under NTCF mitigation (strong versus weak air quality controls). Surface fine particulate matter (PM2:5) and ozone (O3) decrease by 2:20:32 ugm3 and 4:60:88 ppb, respectively (changes quoted here are for the entire 2015-2055 time period; uncertainty represents the 95% confidence interval), over global land surfaces, with larger reductions in some regions including south and southeast Asia. Non-methane NTCF mitigation, however, leads to additional climate change due to the removal of aerosol which causes a net warming effect, including global mean surface temperature and precipitation increases of 0:250:12K and 0:030:012mmd1, respectively. Similarly, increases in extreme weather indices, including the hottest and wettest days, also occur. Regionally, the largest warming and wetting occurs over Asia, including central and north Asia (0:660:20K and 0:030:02mmd1), south Asia (0:470:16K and 0:170:09mmd1), and east Asia (0:460:20K and 0:150:06mmd1). Relatively large warming and wetting of the Arctic also occur at 0:590:36K and 0:040:02mmd1, respectively. Similar surface warming occurs in model simulations with aerosol-only mitigation, implying weak cooling due to ozone reductions. Our findings suggest that future policies that aggressively target non-methane NTCF reductions will improve air quality but will lead to additional surface warming, particularly in Asia and the Arctic. Policies that address other NTCFs including methane, as well as carbon dioxide emissions, must also be adopted to meet climate mitigation goals. © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.
  • Item
    Global cotton production under climate change – Implications for yield and water consumption
    (Munich : EGU, 2021) Jans, Yvonne; von Bloh, Werner; Schaphoff, Sibyll; Müller, Christoph
    Being an extensively produced natural fiber on earth, cotton is of importance for economies. Although the plant is broadly adapted to varying environments, the growth of and irrigation water demand on cotton may be challenged by future climate change. To study the impacts of climate change on cotton productivity in different regions across the world and the irrigation water requirements related to it, we use the process-based, spatially detailed biosphere and hydrology model LPJmL (Lund Potsdam Jena managed land). We find our modeled cotton yield levels in good agreement with reported values and simulated water consumption of cotton production similar to published estimates. Following the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) protocol, we employ an ensemble of five general circulation models under four representative concentration pathways (RCPs) for the 2011 2099 period to simulate future cotton yields. We find that irrigated cotton production does not suffer from climate change if CO2 effects are considered, whereas rainfed production is more sensitive to varying climate conditions. Considering the overall effect of a changing climate and CO2 fertilization, cotton production on current cropland steadily increases for most of the RCPs. Starting from _ 65 million tonnes in 2010, cotton production for RCP4.5 and RCP6.0 equates to 83 and 92 million tonnes at the end of the century, respectively. Under RCP8.5, simulated global cotton production rises by more than 50% by 2099. Taking only climate change into account, projected cotton production considerably shrinks in most scenarios, by up to one-Third or 43 million tonnes under RCP8.5. The simulation of future virtual water content (VWC) of cotton grown under elevated CO2 results for all scenarios in less VWC compared to ambient CO2 conditions. Under RCP6.0 and RCP8.5, VWC is notably decreased by more than 2000m3 t1 in areas where cotton is produced under purely rainfed conditions. By 2040, the average global VWC for cotton declines in all scenarios from currently 3300 to 3000m3 t1, and reduction continues by up to 30% in 2100 under RCP8.5. While the VWC decreases by the CO2 effect, elevated temperature acts in the opposite direction. Ignoring beneficial CO2 effects, global VWC of cotton would increase for all RCPs except RCP2.6, reaching more than 5000m3 t1 by the end of the simulation period under RCP8.5. Given the economic relevance of cotton production, climate change poses an additional stress and deserves special attention. Changes in VWC and water demands for cotton production are of special importance, as cotton production is known for its intense water consumption. The implications of climate impacts on cotton production on the one hand and the impact of cotton production on water resources on the other hand illustrate the need to assess how future climate change may affect cotton production and its resource requirements. Our results should be regarded as optimistic, because of high uncertainty with respect to CO2 fertilization and the lack of implementing processes of boll abscission under heat stress. Still, the inclusion of cotton in LPJmL allows for various large-scale studies to assess impacts of climate change on hydrological factors and the implications for agricultural production and carbon sequestration. © 2021 BMJ Publishing Group. All rights reserved.
  • Item
    Grounding Social Foundations for Integrated Assessment Models of Climate Change
    (Hoboken, NJ : Wiley-Blackwell, 2020) Mathias, Jean‐Denis; Debeljak, Marko; Deffuant, Guillaume; Diemer, Arnaud; Dierickx, Florian; Donges, Jonathan F.; Gladkykh, Ganna; Heitzig, Jobst; Holtz, Georg; Obergassel, Wolfgang; Pellaud, Francine; Sánchez, Angel; Trajanov, Aneta; Videira, Nuno
    Integrated assessment models (IAMs) are commonly used by decision makers in order to derive climate policies. IAMs are currently based on climate-economics interactions, whereas the role of social system has been highlighted to be of prime importance on the implementation of climate policies. Beyond existing IAMs, we argue that it is therefore urgent to increase efforts in the integration of social processes within IAMs. For achieving such a challenge, we present some promising avenues of research based on the social branches of economics. We finally present the potential implications yielded by such social IAMs. ©2020. The Authors. Earth's Future published by Wiley Periodicals LLC on behalf of American Geophysical Union
  • Item
    Incremental improvements of 2030 targets insufficient to achieve the Paris Agreement goals
    (Göttingen : Copernicus Publ., 2020) Geiges, Andreas; Nauels, Alexander; Yanguas Parra, Paola; Andrijevic, Marina; Hare, William; Pfleiderer, Peter; Schaeffer, Michiel; Schleussner, Carl-Friedrich
    Current global mitigation ambition up to 2030 under the Paris Agreement, reflected in the National Determined Contributions (NDCs), is insufficient to achieve the agreement's 1.5 °C long-term temperature limit. As governments are preparing new and updated NDCs for 2020, the question as to how much collective improvement is achieved is a pivotal one for the credibility of the international climate regime. The recent Special Report on Global Warming of 1.5 °C by the Intergovernmental Panel on Climate Change has assessed a wide range of scenarios that achieve the 1.5 °C limit. Those pathways are characterised by a substantial increase in near-term action and total greenhouse gas (GHG) emission levels about 50 % lower than what is implied by current NDCs. Here we assess the outcomes of different scenarios of NDC updating that fall short of achieving this 1.5 °C benchmark. We find that incremental improvements in reduction targets, even if achieved globally, are insufficient to align collective ambition with the goals of the Paris Agreement. We provide estimates for global mean temperature increase by 2100 for different incremental NDC update scenarios and illustrate climate impacts under those median scenarios for extreme temperature, long-term sea-level rise and economic damages for the most vulnerable countries. Under the assumption of maintaining ambition as reflected in current NDCs up to 2100 and beyond, we project a reduction in the gross domestic product (GDP) in tropical countries of around 60 % compared to a no-climate-change scenario and median long-term sea-level rise of close to 2 m in 2300. About half of these impacts can be avoided by limiting warming to 1.5 °C or below. Scenarios of more incremental NDC improvements do not lead to comparable reductions in climate impacts. An increase in aggregated NDC ambition of big emitters by 33 % in 2030 does not reduce presented climate impacts by more than about half compared to limiting warming to 1.5 °C. Our results underscore that a transformational increase in 2030 ambition is required to achieve the goals of the Paris Agreement and avoid the worst impacts of climate change. © 2020 SPIE. All rights reserved.
  • Item
    Cascading Hazards in the Aftermath of Australia's 2019/2020 Black Summer Wildfires
    (Hoboken, NJ : Wiley-Blackwell, 2021) Kemter, M.; Fischer, M.; Luna, L.V.; Schönfeldt, E.; Vogel, J.; Banerjee, A.; Korup, O.; Thonicke, K.
    Following an unprecedented drought, Australia's 2019/2020 “Black Summer” fire season caused severe damage, gravely impacting both humans and ecosystems, and increasing susceptibility to other hazards. Heavy precipitation in early 2020 led to flooding and runoff that entrained ash and soil in burned areas, increasing sediment concentration in rivers, and reducing water quality. We exemplify this hazard cascade in a catchment in New South Wales by mapping burn severity, flood, and rainfall recurrence; estimating changes in soil erosion; and comparing them with river turbidity data. We show that following the extreme drought and wildfires, even moderate rain and floods led to undue increases in soil erosion and reductions in water quality. While natural risk analysis and planning commonly focuses on a single hazard, we emphasize the need to consider the entire hazard cascade, and highlight the impacts of ongoing climate change beyond its direct effect on wildfires.
  • Item
    Quantifying Water Scarcity in Northern China Within the Context of Climatic and Societal Changes and South-to-North Water Diversion
    (Hoboken, NJ : Wiley-Blackwell, 2020) Yin, Yuanyuan; Wang, Lei; Wang, Zhongjing; Tang, Qiuhong; Piao, Shilong; Chen, Deliang; Xia, Jun; Conradt, Tobias; Liu, Junguo; Wada, Yoshihide; Cai, Ximing; Xie, Zhenghui; Duan, Qingyun; Li, Xiuping; Zhou, Jing; Zhang, Jianyun
    With the increasing pressure from population growth and economic development, northern China (NC) faces a grand challenge of water scarcity, which can be further exacerbated by climatic and societal changes. The South-to-North Water Diversion (SNWD) project is designed to mitigate the water scarcity in NC. However, few studies have quantified the impact of the SNWD on water scarcity within the context of climatic and societal changes and its potential effects on economic and agricultural food in the region. We used water supply stress index (WaSSI) to quantify water scarcity within the context of environmental change in NC and developed a method to estimate the economic and agricultural impacts of the SNWD. Focuses were put on alleviating the water supply shortage and economic and agricultural benefits for the water-receiving NC. We find that societal changes, especially economic growth, are the major contributors to water scarcity in NC during 2009–2099. To completely mitigate the water scarcity of NC, at least an additional water supply of 13 billion m3/year (comparable to the annual diversion water by SNWD Central Route) will be necessary. Although SNWD alone cannot provide the full solution to NC's water shortage in next few decades, it can significantly alleviate the water supply stress in NC (particularly Beijing), considerably increasing the agricultural production (more than 115 Tcal/year) and bringing economic benefits (more than 51 billion RMB/year) through supplying industrial and domestic water use. Additionally, the transfer project could have impacts on the ecological environment in the exporting regions. ©2020. The Authors.
  • Item
    Pacific climate reflected in Waipuna Cave drip water hydrochemistry
    (Munich : EGU, 2020) Nava-Fernandez, Cinthya; Hartland, Adam; Gázquez, Fernando; Kwiecien, Ola; Marwan, Norbert; Fox, Bethany; Hellstrom, John; Pearson, Andrew; Ward, Brittany; French, Amanda; Hodell, David A.; Immenhauser, Adrian; Breitenbach, Sebastian F.M.
    Cave microclimate and geochemical monitoring is vitally important for correct interpretations of proxy time series from speleothems with regard to past climatic and environmental dynamics. We present results of a comprehensive cave-monitoring programme in Waipuna Cave in the North Island of New Zealand, a region that is strongly influenced by the Southern Westerlies and the El Niño-Southern Oscillation (ENSO). This study aims to characterise the response of the Waipuna Cave hydrological system to atmospheric circulation dynamics in the southwestern Pacific region in order to assure the quality of ongoing palaeo-environmental reconstructions from this cave. Drip water from 10 drip sites was collected at roughly monthly intervals for a period of ca. 3 years for isotopic (d18O, dD, d-excess parameter, d17O, and 17Oexcess) and elemental (Mg=Ca and Sr=Ca) analysis. The monitoring included spot measurements of drip rates and cave air CO2 concentration. Cave air temperature and drip rates were also continuously recorded by automatic loggers. These datasets were compared to surface air temperature, rainfall, and potential evaporation from nearby meteorological stations to test the degree of signal transfer and expression of surface environmental conditions in Waipuna Cave hydrochemistry. Based on the drip response dynamics to rainfall and other characteristics, we identified three types of discharge associated with hydrological routing in Waipuna Cave: (i) type 1-diffuse flow, (ii) type 2-fracture flow, and (iii) type 3-combined flow. Drip water isotopes do not reflect seasonal variability but show higher values during severe drought. Drip water d18O values are characterised by small variability and reflect the mean isotopic signature of precipitation, testifying to rapid and thorough homogenisation in the epikarst. Mg=Ca and Sr=Ca ratios in drip waters are predominantly controlled by prior calcite precipitation (PCP). Prior calcite precipitation is strongest during austral summer (December-February), reflecting drier conditions and a lack of effec tive infiltration, and is weakest during the wet austral winter (July-September). The Sr=Ca ratio is particularly sensitive to ENSO conditions due to the interplay of congruent or incongruent host rock dissolution, which manifests itself in lower Sr=Ca in above-average warmer and wetter (La Niña-like) conditions. Our microclimatic observations at Waipuna Cave provide a valuable baseline for the rigorous interpretation of speleothem proxy records aiming at reconstructing the past expression of Pacific climate modes. © 2020 Author(s).
  • Item
    Global scenarios of irrigation water abstractions for bioenergy production: a systematic review
    (Munich : EGU, 2021) Stenzel, Fabian; Gerten, Dieter; Hanasaki, Naota
    Many scenarios of future climate evolution and its anthropogenic drivers include considerable amounts of bioenergy as a fuel source, as a negative emission technology, and for providing electricity. The associated freshwater abstractions for irrigation of dedicated biomass plantations might be substantial and therefore potentially increase water limitation and stress in affected regions; however, assumptions and quantities of water use provided in the literature vary strongly. This paper reviews existing global assessments of freshwater abstractions for bioenergy production and puts these estimates into the context of scenarios of other water-use sectors. We scanned the available literature and (out of 430 initial hits) found 16 publications (some of which include several bioenergy-water-use scenarios) with reported values on global irrigation water abstractions for biomass plantations, suggesting water withdrawals in the range of 128.4 to 9000 km3 yr−1, which would come on top of (or compete with) agricultural, industrial, and domestic water withdrawals. To provide an understanding of the origins of this large range, we present the diverse underlying assumptions, discuss major study differences, and calculate an inverse water-use efficiency (iwue), which facilitates comparison of the required freshwater amounts per produced biomass harvest. We conclude that due to the potentially high water demands and the tradeoffs that might go along with them, bioenergy should be an integral part of global assessments of freshwater demand and use. For interpreting and comparing reported estimates of possible future bioenergy water abstractions, full disclosure of parameters and assumptions is crucial. A minimum set should include the complete water balances of bioenergy production systems (including partitioning of blue and green water), bioenergy crop species and associated water-use efficiencies, rainfed and irrigated bioenergy plantation locations (including total area and meteorological conditions), and total biomass harvest amounts. In the future, a model intercomparison project with standardized parameters and scenarios would be helpful.