Search Results

Now showing 1 - 10 of 15
  • Item
    Comprehensive Assessment of the Dynamics of Banana Chilling Injury by Advanced Optical Techniques
    (Basel : MDPI, 2021) Herppich, Werner B.; Zsom, Tamás
    Green‐ripe banana fruit are sensitive to chilling injury (CI) and, thus, prone to postharvest quality losses. Early detection of CI facilitates quality maintenance and extends shelf life. CI affects all metabolic levels, with membranes and, consequently, photosynthesis being primary targets. Optical techniques such as chlorophyll a fluorescence analysis (CFA) and spectroscopy are promising tools to evaluate CI effects in photosynthetically active produce. Results obtained on bananas are, however, largely equivocal. This results from the lack of a rigorous evaluation of chilling impacts on the various aspects of photosynthesis. Continuous and modulated CFA and imaging (CFI), and VIS remission spectroscopy (VRS) were concomitantly applied to noninvasively and comprehensively monitor photosynthetically relevant effects of low temperatures (5 °C, 10 °C, 11.5 °C and 13 °C). Detailed analyses of chilling‐related variations in photosynthetic activity and photoprotection, and in contents of relevant pigments in green‐ripe bananas, helped to better understand the physiological changes occurring during CI, highlighting that distinct CFA and VRS parameters comprehensively reflect various effects of chilling on fruit photosynthesis. They revealed why not all CFA parameters can be applied meaningfully for early detection of chilling effects. This study provides relevant requisites for improving CI monitoring and prediction.
  • Item
    Emerging Roles of 1D Vertical Nanostructures in Orchestrating Immune Cell Functions
    (Hoboken, NJ : Wiley, 2020) Chen, Yaping; Wang, Ji; Li, Xiangling; Hu, Ning; Voelcker, Nicolas H.; Xie, Xi; Elnathan, Roey
    Engineered nano–bio cellular interfaces driven by 1D vertical nanostructures (1D‐VNS) are set to prompt radical progress in modulating cellular processes at the nanoscale. Here, tuneable cell–VNS interfacial interactions are probed and assessed, highlighting the use of 1D‐VNS in immunomodulation, and intracellular delivery into immune cells—both crucial in fundamental and translational biomedical research. With programmable topography and adaptable surface functionalization, 1D‐VNS provide unique biophysical and biochemical cues to orchestrate innate and adaptive immunity, both ex vivo and in vivo. The intimate nanoscale cell–VNS interface leads to membrane penetration and cellular deformation, facilitating efficient intracellular delivery of diverse bioactive cargoes into hard‐to‐transfect immune cells. The unsettled interfacial mechanisms reported to be involved in VNS‐mediated intracellular delivery are discussed. By identifying up‐to‐date progress and fundamental challenges of current 1D‐VNS technology in immune‐cell manipulation, it is hoped that this report gives timely insights for further advances in developing 1D‐VNS as a safe, universal, and highly scalable platform for cell engineering and enrichment in advanced cancer immunotherapy such as chimeric antigen receptor‐T therapy.
  • Item
    High-Pressure-Sintering-Induced Microstructural Engineering for an Ultimate Phonon Scattering of Thermoelectric Half-Heusler Compounds
    (Weinheim : Wiley-VCH, 2021) He, Ran; Zhu, Taishan; Ying, Pingjun; Chen, Jie; Giebeler, Lars; Kühn, Uta; Grossman, Jeffrey C.; Wang, Yumei; Nielsch, Kornelius
    Thermal management is of vital importance in various modern technologies such as portable electronics, photovoltaics, and thermoelectric devices. Impeding phonon transport remains one of the most challenging tasks for improving the thermoelectric performance of certain materials such as half-Heusler compounds. Herein, a significant reduction of lattice thermal conductivity (κL) is achieved by applying a pressure of ≈1 GPa to sinter a broad range of half-Heusler compounds. Contrasting with the common sintering pressure of less than 100 MPa, the gigapascal-level pressure enables densification at a lower temperature, thus greatly modifying the structural characteristics for an intensified phonon scattering. A maximum κL reduction of ≈83% is realized for HfCoSb from 14 to 2.5 W m−1 K−1 at 300 K with more than 95% relative density. The realized low κL originates from a remarkable grain-size refinement to below 100 nm together with the abundant in-grain defects, as determined by microscopy investigations. This work uncovers the phonon transport properties of half-Heusler compounds under unconventional microstructures, thus showing the potential of high-pressure compaction in advancing the performance of thermoelectric materials.
  • Item
    Light-Driven Proton Transfer for Cyclic and Temporal Switching of Enzymatic Nanoreactors
    (Weinheim : Wiley-VCH, 2020) Moreno, Silvia; Sharan, Priyanka; Engelke, Johanna; Gumz, Hannes; Boye, Susanne; Oertel, Ulrich; Wang, Peng; Banerjee, Susanta; Klajn, Rafal; Voit, Brigitte; Lederer, Albena; Appelhans, Dietmar
    Temporal activation of biological processes by visible light and subsequent return to an inactive state in the absence of light is an essential characteristic of photoreceptor cells. Inspired by these phenomena, light-responsive materials are very attractive due to the high spatiotemporal control of light irradiation, with light being able to precisely orchestrate processes repeatedly over many cycles. Herein, it is reported that light-driven proton transfer triggered by a merocyanine-based photoacid can be used to modulate the permeability of pH-responsive polymersomes through cyclic, temporally controlled protonation and deprotonation of the polymersome membrane. The membranes can undergo repeated light-driven swelling-contraction cycles without losing functional effectiveness. When applied to enzyme loaded-nanoreactors, this membrane responsiveness is used for the reversible control of enzymatic reactions. This combination of the merocyanine-based photoacid and pH-switchable nanoreactors results in rapidly responding and versatile supramolecular systems successfully used to switch enzymatic reactions ON and OFF on demand.
  • Item
    In Situ N-Doped Graphene and Mo Nanoribbon Formation from Mo2Ti2C3 MXene Monolayers
    (Weinheim : Wiley-VCH, 2020) Mendes, Rafael Gregorio; Ta, Huy Quang; Yang, Xiaoqin; Li, Wei; Bachmatiuk, Alicja; Choi, Jin-Ho; Gemming, Thomas; Anasori, Babak; Lijun, Liu; Fu, Lei; Liu, Zhongfan; Rümmeli, Mark Hermann
    Since the advent of monolayered 2D transition metal carbide and nitrides (MXenes) in 2011, the number of different monolayer systems and the study thereof have been on the rise. Mo2Ti2C3 is one of the least studied MXenes and new insights to this material are of value to the field. Here, the stability of Mo2Ti2C3 under electron irradiation is investigated. A transmission electron microscope (TEM) is used to study the structural and elemental changes in situ. It is found that Mo2Ti2C3 is reasonably stable for the first 2 min of irradiation. However, structural changes occur thereafter, which trigger increasingly rapid and significant rearrangement. This results in the formation of pores and two new nanomaterials, namely, N-doped graphene membranes and Mo nanoribbons. The study provides insight into the stability of Mo2Ti2C3 monolayers against electron irradiation, which will allow for reliable future study of the material using TEM. Furthermore, these findings will facilitate further research in the rapidly growing field of electron beam driven chemistry and engineering of nanomaterials. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Interface-Dominated Topological Transport in Nanograined Bulk Bi2 Te3
    (Weinheim : Wiley-VCH, 2021) Izadi, Sepideh; Han, Jeong Woo; Salloum, Sarah; Wolff, Ulrike; Schnatmann, Lauritz; Asaithambi, Aswin; Matschy, Sebastian; Schlörb, Heike; Reith, Heiko; Perez, Nicolas; Nielsch, Kornelius; Schulz, Stephan; Mittendorff, Martin; Schierning, Gabi
    3D topological insulators (TI) host surface carriers with extremely high mobility. However, their transport properties are typically dominated by bulk carriers that outnumber the surface carriers by orders of magnitude. A strategy is herein presented to overcome the problem of bulk carrier domination by using 3D TI nanoparticles, which are compacted by hot pressing to macroscopic nanograined bulk samples. Bi2Te3 nanoparticles well known for their excellent thermoelectric and 3D TI properties serve as the model system. As key enabler for this approach, a specific synthesis is applied that creates nanoparticles with a low level of impurities and surface contamination. The compacted nanograined bulk contains a high number of interfaces and grain boundaries. Here it is shown that these samples exhibit metallic-like electrical transport properties and a distinct weak antilocalization. A downward trend in the electrical resistivity at temperatures below 5 K is attributed to an increase in the coherence length by applying the Hikami–Larkin–Nagaoka model. THz time-domain spectroscopy reveals a dominance of the surface transport at low frequencies with a mobility of above 103 cm2 V−1 s−1 even at room temperature. These findings clearly demonstrate that nanograined bulk Bi2Te3 features surface carrier properties that are of importance for technical applications.
  • Item
    Imperceptible Supercapacitors with High Area-Specific Capacitance
    (Weinheim : Wiley-VCH, 2021) Ge, Jin; Zhu, Minshen; Eisner, Eric; Yin, Yin; Dong, Haiyun; Karnaushenko, Dmitriy D.; Karnaushenko, Daniil; Zhu, Feng; Ma, Libo; Schmidt, Oliver G.
    Imperceptible electronics will make next-generation healthcare and biomedical systems thinner, lighter, and more flexible. While other components are thoroughly investigated, imperceptible energy storage devices lag behind because the decrease of thickness impairs the area-specific energy density. Imperceptible supercapacitors with high area-specific capacitance based on reduced graphene oxide/polyaniline (RGO/PANI) composite electrodes and polyvinyl alcohol (PVA)/H2SO4 gel electrolyte are reported. Two strategies to realize a supercapacitor with a total device thickness of 5 µm—including substrate, electrode, and electrolyte—and an area-specific capacitance of 36 mF cm−2 simultaneously are implemented. First, the void volume of the RGO/PANI electrodes through mechanical compression is reduced, which decreases the thickness by 83% while retaining 89% of the capacitance. Second, the PVA-to-H2SO4 mass ratio is decreased to 1:4.5, which improves the ion conductivity by 5000% compared to the commonly used PVA/H2SO4 gel. Both advantages enable a 2 µm-thick gel electrolyte for planar interdigital supercapacitors. The impressive electromechanical stability of the imperceptible supercapacitors by wrinkling the substrate to produce folds with radii of 6 µm or less is demonstrated. The supercapacitors will be meaningful energy storage modules for future self-powered imperceptible electronics.
  • Item
    Sperm-Driven Micromotors Moving in Oviduct Fluid and Viscoelastic Media
    (Weinheim : Wiley-VCH, 2020) Striggow, Friedrich; Medina-Sánchez, Mariana; Auernhammer, Günter K.; Magdanz, Veronika; Friedrich, Benjamin M.; Schmidt, Oliver G.
    Biohybrid micromotors propelled by motile cells are fascinating entities for autonomous biomedical operations on the microscale. Their operation under physiological conditions, including highly viscous environments, is an essential prerequisite to be translated to in vivo settings. In this work, a sperm-driven microswimmer, referred to as a spermbot, is demonstrated to operate in oviduct fluid in vitro. The viscoelastic properties of bovine oviduct fluid (BOF), one of the fluids that sperm cells encounter on their way to the oocyte, are first characterized using passive microrheology. This allows to design an artificial oviduct fluid to match the rheological properties of oviduct fluid for further experiments. Sperm motion is analyzed and it is confirmed that kinetic parameters match in real and artificial oviduct fluids, respectively. It is demonstrated that sperm cells can efficiently couple to magnetic microtubes and propel them forward in media of different viscosities and in BOF. The flagellar beat pattern of coupled as well as of free sperm cells is investigated, revealing an alteration on the regular flagellar beat, presenting an on–off behavior caused by the additional load of the microtube. Finally, a new microcap design is proposed to improve the overall performance of the spermbot in complex biofluids. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Advanced Hybrid GaN/ZnO Nanoarchitectured Microtubes for Fluorescent Micromotors Driven by UV Light
    (Weinheim : Wiley-VCH, 2020) Wolff, Niklas; Ciobanu, Vladimir; Enachi, Mihail; Kamp, Marius; Braniste, Tudor; Duppel, Viola; Shree, Sindu; Raevschi, Simion; Medina-Sánchez, Mariana; Adelung, Rainer; Schmidt, Oliver G.; Kienle, Lorenz; Tiginyanu, Ion
    The development of functional microstructures with designed hierarchical and complex morphologies and large free active surfaces offers new potential for improvement of the pristine microstructures properties by the synergistic combination of microscopic as well as nanoscopic effects. In this contribution, dedicated methods of transmission electron microscopy (TEM) including tomography are used to characterize the complex hierarchically structured hybrid GaN/ZnO:Au microtubes containing a dense nanowire network on their interior. The presence of an epitaxially stabilized and chemically extremely stable ultrathin layer of ZnO on the inner wall of the produced GaN microtubes is evidenced. Gold nanoparticles initially trigger the catalytic growth of solid solution phase (Ga1– xZnx)(N1– xOx) nanowires into the interior space of the microtube, which are found to be terminated by AuGa-alloy nanodots coated in a shell of amorphous GaOx species after the hydride vapor phase epitaxy process. The structural characterization suggests that this hierarchical design of GaN/ZnO microtubes could offer the potential to exhibit improved photocatalytic properties, which are initially demonstrated under UV light irradiation. As a proof of concept, the produced microtubes are used as photocatalytic micromotors in the presence of hydrogen peroxide solution with luminescent properties, which are appealing for future environmental applications and active matter fundamental studies. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Multimodal Characterization of Resin Embedded and Sliced Polymer Nanoparticles by Means of Tip-Enhanced Raman Spectroscopy and Force-Distance Curve Based Atomic Force Microscopy
    (Weinheim : Wiley-VCH, 2020) Höppener, Christiane; Schacher, Felix H.; Deckert, Volker
    Understanding the property-function relation of nanoparticles in various application fields involves determining their physicochemical properties, which is still a remaining challenge to date. While a multitude of different characterization tools can be applied, these methods by themselves can only provide an incomplete picture. Therefore, novel analytical techniques are required, which can address both chemical functionality and provide structural information at the same time with high spatial resolution. This is possible by using tip-enhanced Raman spectroscopy (TERS), but due to its limited depth information, TERS is usually restricted to investigations of the nanoparticle surface. Here, TERS experiments are established on polystyrene nanoparticles (PS NPs) after resin embedding and microtome slicing. With that, unique access to their internal morphological features is gained, and thus, enables differentiation between information obtained for core- and shell-regions. Complementary information is obtained by means of transmission electron microscopy (TEM) and from force-distance curve based atomic force microscopy (FD-AFM). This multimodal approach achieves a high degree of discrimination between the resin and the polymers used for nanoparticle formulation. The high potential of TERS combined with advanced AFM spectroscopy tools to probe the mechanical properties is applied for quality control of the resin embedding procedure.