Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Commentary: What We Know About Stemflow's Infiltration Area

2020, Carlyle-Moses, Darryl E., Iida, Shin'ichi, Germer, Sonja, Llorens, Pilar, Michalzik, Beate, Nanko, Kazuki, Tanaka, Tadashi, Tischer, Alexander, Levia, Delphis F.

[No abstract available]

Loading...
Thumbnail Image
Item

Farm Production Diversity and Household Dietary Diversity: Panel Data Evidence From Rural Households in Tanzania

2021-5-17, Habtemariam, Lemlem Teklegiorgis, Gornott, Christoph, Hoffmann, Harry, Sieber, Stefan

Evidence on whether diversifying farm production leads to improved household dietary diversity and nutrition remains inconclusive. Existing studies analyzing the link between production diversity and dietary diversity are mainly based on cross-sectional methods, which could be biased by omitted confounding factors. Using two waves of a panel household survey of 900 rural households in Tanzania, this paper examines the link between production diversity and dietary diversity, while minimizing potential confounding effects. We estimate four regression models with two different production diversity measures and two panel estimation methods—fixed effect (FE) and random effect (RE). In three out of the four models, production diversity is significantly and positively associated with the dietary diversity measure of the food consumption score. The production diversity indicator is represented by the total crop and livestock species count, as well as by counting only crop species. The total crop and livestock species count shows a significant positive association with dietary diversity across estimation methods while the positive association with crop species count is not significant in the FE method. Our results suggest that the selection of appropriate production diversity indicators tailored to the specific circumstances of the local agricultural system is likely one key factor in identifying a robust relationship between production diversity and dietary diversity.

Loading...
Thumbnail Image
Item

The Effect of Plasma Treated Water Unit Processes on the Food Quality Characteristics of Fresh-Cut Endive

2021-1-27, Schnabel, Uta, Handorf, Oliver, Winter, Hauke, Weihe, Thomas, Weit, Christoph, Schäfer, Jan, Stachowiak, Jörg, Boehm, Daniela, Below, Harald, Bourke, Paula, Ehlbeck, Jörg

This study evaluated the impact of a defined plasma treated water (PTW) when applied to various stages within fresh-cut endive processing. The quality characteristic responses were investigated to establish the impact of the PTW unit processes and where PTW may be optimally applied in a model process line to retain or improve produce quality. Different stages of application of PTW within the washing process were investigated and compared to tap water and chlorine dioxide. Fresh-cut endive (Cichorium endivia L.) samples were analyzed for retention of food quality characteristics. Measurements included color, texture, and nitrate quantification. Effects on tissue surface and cell organelles were observed through scanning electron and atomic force microscopy. Overall, the endive quality characteristics were retained by incorporating PTW in the washing process. Furthermore, promising results for color and texture characteristics were observed, which were supported by the microscopic assays of the vegetal tissue. While ion chromatography detected high concentrations of nitrite and nitrate in PTW, these did not affect the nitrate concentration of the lettuce tissue post-processing and were below the concentrations within EU regulations. These results provide a pathway to scale up the industrial application of PTW to improve and retain quality characteristic retention of fresh leafy products, whilst also harnessing the plasma functionalized water as a process intervention for reducing microbial load at multiple points, whether on the food surface, within the process water or on food-processing surfaces.

Loading...
Thumbnail Image
Item

Agriculture's Historic Twin-Challenge Toward Sustainable Water Use and Food Supply for All

2020, Jägermeyr, Jonas

A sustainable and just future, envisioned by the UN's 2030 Agenda for Sustainable Development, puts agricultural systems under a heavy strain. The century-old quandary to provide ever-growing human populations with sufficient food takes on a new dimension with the recognition of environmental limits for agricultural resource use. To highlight challenges and opportunities toward sustainable food security in the twenty first century, this perspective paper provides a historical account of the escalating pressures on agriculture and freshwater resources alike, supported by new quantitative estimates of the ascent of excessive human water use. As the transformation of global farming into sustainable forms is unattainable without a revolution in agricultural water use, water saving and food production potentials are put into perspective with targets outlined by the Sustainable Development Goals (SDGs). The literature body and here-confirmed global estimates of untapped opportunities in farm water management indicate that these measures could sustainably intensify today's farming systems at scale. While rigorous implementation of sustainable water withdrawals (SDG 6.4) might impinge upon 5% of global food production, scaling-up water interventions in rainfed and irrigated systems could over-compensate such losses and further increase global production by 30% compared to the current situation (SDG 2.3). Without relying on future technological fixes, traditional on-farm water and soil management provides key strategies associated with important synergies that needs better integration into agro-ecological landscape approaches. Integrated strategies for sustainable intensification of agriculture within planetary boundaries are a potential way to attain several SDGs, but they are not yet receiving attention from high-level development policies. © Copyright © 2020 Jägermeyr.