Search Results

Now showing 1 - 3 of 3
  • Item
    Building consensus on water use assessment of livestock production systems and supply chains: Outcome and recommendations from the FAO LEAP Partnership
    (Amsterdam [u.a.] : Elsevier Science, 2021) Boulay, Anne-Marie; Drastig, Katrin; Amanullah; Chapagain, Ashok; Charlon, Veronica; Civit, Bárbara; DeCamillis, Camillo; De Souza, Marlos; Hess, Tim; Hoekstra, Arjen Y.; Ibidhi, Ridha; Lathuillière, Michael J.; Manzardo, Alessandro; McAllister, Tim; Morales, Ricardo A.; Motoshita, Masaharu; Palhares, Julio Cesar Pascale; Pirlo, Giacomo; Ridoutt, Brad; Russo, Valentina; Salmoral, Gloria; Singh, Ranvir; Vanham, Davy; Wiedemann, Stephen; Zheng, Weichao; Pfister, Stephan
    The FAO Livestock Environmental Assessment and Performance (LEAP) Partnership organised a Technical Advisory Group (TAG) to develop reference guidelines on water footprinting for livestock production systems and supply chains. The mandate of the TAG was to i) provide recommendations to monitor the environmental performance of feed and livestock supply chains over time so that progress towards improvement targets can be measured, ii) be applicable for feed and water demand of small ruminants, poultry, large ruminants and pig supply chains, iii) build on, and go beyond, the existing FAO LEAP guidelines and iv) pursue alignment with relevant international standards, specifically ISO 14040 (2006)/ISO 14044 (2006), and ISO 14046 (2014). The recommended guidelines on livestock water use address both impact assessment (water scarcity footprint as defined by ISO 14046, 2014) and water productivity (water use efficiency). While most aspects of livestock water use assessment have been proposed or discussed independently elsewhere, the TAG reviewed and connected these concepts and information in relation with each other and made recommendations towards comprehensive assessment of water use in livestock production systems and supply chains. The approaches to assess the quantity of water used for livestock systems are addressed and the specific assessment methods for water productivity and water scarcity are recommended. Water productivity assessment is further advanced by its quantification and reporting with fractions of green and blue water consumed. This allows the assessment of the environmental performance related to water use of a livestock-related system by assessing potential environmental impacts of anthropogenic water consumption (only “blue water”); as well as the assessment of overall water productivity of the system (including “green” and “blue water” consumption). A consistent combination of water productivity and water scarcity footprint metrics provides a complete picture both in terms of potential productivity improvements of the water consumption as well as minimizing potential environmental impacts related to water scarcity. This process resulted for the first time in an international consensus on water use assessment, including both the life-cycle assessment community with the water scarcity footprint and the water management community with water productivity metrics. Despite the main focus on feed and livestock production systems, the outcomes of this LEAP TAG are also applicable to many other agriculture sectors.
  • Item
    Thinning efficacy of metamitron on young 'RoHo 3615' (Evelina®) apple
    (Amsterdam [u.a.] : Elsevier Science, 2020) Penzel, Martin; Kröling, Christian
    To achieve a high quantity of premium class fruit, chemical thinning is an important component of crop load management in apples. For this purpose, the triazine-type photosynthetic inhibitor metamitron was registered for fruit thinning in Germany. Frequent studies demonstrated consistent thinning effects of metamitron on trees of different apple and pear cultivars. In the present study, the efficacy of metamitron applied at a low concentration (165 g ha−1) was investigated in 2016 and 2017 on young 'RoHo3615' apple trees, planted in 2014. The highest fruit set reduction was achieved when metamitron was applied twice. Single application, in contrast, led to variable results and pointed out the strong dependence of the thinning efficacy of metamitron on favourable weather conditions. Adding citric acid or the growth regulator prohexadione-Ca in combination with ammonium sulphate did not affect the thinning efficacy of metamitron. The fruit quality was high in any treatment and no effects of thinning treatment on fruit colouration or percentage of skin russeting were observed. Consequently, metamitron is an effective fruit thinning agent for young apple trees, which can be additionally used in combination with the mentioned substances, while maintaining a high fruit quality
  • Item
    Visible-NIR ‘point’ spectroscopy in postharvest fruit and vegetable assessment: The science behind three decades of commercial use
    (Amsterdam [u.a.] : Elsevier Science, 2020) Walsh, Kerry B.; Blasco, José; Zude-Sasse, Manuela; Sun, Xudong
    The application of visible (Vis; 400–750 nm) and near infrared red (NIR; 750–2500 nm) region spectroscopy to assess fruit and vegetables is reviewed in context of ‘point’ spectroscopy, as opposed to multi- or hyperspectral imaging. Vis spectroscopy targets colour assessment and pigment analysis, while NIR spectroscopy has been applied to assessment of macro constituents (principally water) in fresh produce in commercial practice, and a wide range of attributes in the scientific literature. This review focusses to key issues relevant to the widespread implementation of Vis-NIR technology in the fruit sector. A background to the concepts and technology involved in the use of Vis-NIR spectroscopy is provided and instrumentation for in-field and in-line applications, which has been available for two and three decades, respectively, is described. A review of scientific effort is made for the period 2015 - February 2020, in terms of the application areas, instrumentation, chemometric methods and validation procedures, and this work is critiqued through comparison to techniques in commercial use, with focus to wavelength region, optical geometry, experimental design, and validation procedures. Recommendations for future research activity in this area are made, e.g., application development with consideration of the distribution of the attribute of interest in the product and the matching of optically sampled and reference method sampled volume; instrumentation comparisons with consideration of repeatability, optimum optical geometry and wavelength range). Recommendations are also made for reporting requirements, viz. description of the application, the reference method, the composition of calibration and test populations, chemometric reporting and benchmarking to a known instrument/method, with the aim of maximising useful conclusions from the extensive work being done around the world.