Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Characterization of antibiotic and biocide resistance genes and virulence factors of staphylococcus species associated with bovine mastitis in Rwanda

2020, Antók, Fruzsina Irén, Mayrhofer, Rosa, Marbach, Helene, Masengesho, Jean Claude, Keinprecht, Helga, Nyirimbuga, Vedaste, Fischer, Otto, Lepuschitz, Sarah, Ruppitsch, Werner, Ehling-Schulz, Monika, Feßler, Andrea T., Schwarz, Stefan, Monecke, Stefan, Ehricht, Ralf, Grunert, Tom, Spergser, Joachim, Loncaric, Igor

The present study was conducted from July to August 2018 on milk samples taken at dairy farms in the Northern Province and Kigali District of Rwanda in order to identify Staphylococcus spp. associated with bovine intramammary infection. A total of 161 staphylococcal isolates originating from quarter milk samples of 112 crossbred dairy cattle were included in the study. Antimicrobial susceptibility testing was performed and isolates were examined for the presence of various resistance genes. Staphylococcus aureus isolates were also analyzed for the presence of virulence factors, genotyped by spa typing and further phenotypically subtyped for capsule expression using Fourier Transform Infrared (FTIR) spectroscopy. Selected S. aureus were characterized using DNA microarray technology, multi-locus sequence typing (MLST) and whole-genome sequencing. All mecA-positive staphylococci were further genotyped using dru typing. In total, 14 different staphylococcal species were detected, with S. aureus being most prevalent (26.7%), followed by S. xylosus (22.4%) and S. haemolyticus (14.9%). A high number of isolates was resistant to penicillin and tetracycline. Various antimicrobial and biocide resistance genes were detected. Among S. aureus, the Panton–Valentine leukocidin (PVL) genes, as well as bovine leukocidin (LukM/LukF-P83) genes, were detected in two and three isolates, respectively, of which two also carried the toxic shock syndrome toxin gene tsst-1 bovine variant. t1236 was the predominant spa type. FTIR-based capsule serotyping revealed a high prevalence of non-encapsulated S. aureus isolates (89.5%). The majority of the selected S. aureus isolates belonged to clonal complex (CC) 97 which was determined using DNA microarray based assignment. Three new MLST sequence types were detected. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.

Loading...
Thumbnail Image
Item

Microfluidic Network Simulations Enable On-Demand Prediction of Control Parameters for Operating Lab-on-a-Chip-Devices

2021, Böke, Julia Sophie, Kraus, Daniel, Henkel, Thomas

Reliable operation of lab-on-a-chip systems depends on user-friendly, precise, and predictable fluid management tailored to particular sub-tasks of the microfluidic process protocol and their required sample fluids. Pressure-driven flow control, where the sample fluids are delivered to the chip from pressurized feed vessels, simplifies the fluid management even for multiple fluids. The achieved flow rates depend on the pressure settings, fluid properties, and pressure-throughput characteristics of the complete microfluidic system composed of the chip and the interconnecting tubing. The prediction of the required pressure settings for achieving given flow rates simplifies the control tasks and enables opportunities for automation. In our work, we utilize a fast-running, Kirchhoff-based microfluidic network simulation that solves the complete microfluidic system for in-line prediction of the required pressure settings within less than 200 ms. The appropriateness of and benefits from this approach are demonstrated as exemplary for creating multi-component laminar co-flow and the creation of droplets with variable composition. Image-based methods were combined with chemometric approaches for the readout and correlation of the created multi-component flow patterns with the predictions obtained from the solver.

Loading...
Thumbnail Image
Item

Staphylococcus aureus and methicillin resistant S. Aureus in nepalese primates: Resistance to antimicrobials, virulence, and genetic lineages

2020, Roberts, Marilyn C., Joshi, Prabhu Raj, Monecke, Stefan, Ehricht, Ralf, Müller, Elke, Gawlik, Darius, Diezel, Celia, Braun, Sascha D., Paudel, Saroj, Acharya, Mahesh, Khanal, Laxman, Koju, Narayan P., Chalise, Mukesh, Kyes, Randall C.

Staphylococcus aureus is a ubiquitous pathogen and colonizer in humans and animals. There are few studies on the molecular epidemiology of S. aureus in wild monkeys and apes. S. aureus carriage in rhesus macaques (Macaca mulatta) and Assam macaques (Macaca assamensis) is a species that has not previously been sampled and lives in remote environments with limited human contact. Forty Staphylococcus aureus isolates including 33 methicillin-susceptible S. aureus (MSSA) and seven methicillin-resistant S. aureus (MRSA) were characterized. Thirty-four isolates were from rhesus macaques and six isolates (five MSSA, one MRSA) were from Assam macaques. Isolates were characterized using StaphyType DNA microarrays. Five of the MRSA including one from Assam macaque were CC22 MRSA-IV (PVL+/tst+), which is a strain previously identified in Nepalese rhesus. One MRSA each were CC6 MRSA-IV and CC772 MRSA-V (PVL+). One MSSA each belonged to CC15, CC96, and CC2990. Six MRSA isolates carried the blaZ, while ten known CC isolates (seven MRSA, three MSSA) carried a variety of genes including aacA-aphD, aphA3, erm(C), mph(C), dfrA, msrA, and/or sat genes. The other 30 MSSA isolates belonged to 17 novel clonal complexes, carried no antibiotic resistance genes, lacked Panton–Valentine Leukocidin (PVL), and most examined exotoxin genes. Four clonal complexes carried egc enterotoxin genes, and four harbored edinB, which is an exfoliative toxin homologue. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.

Loading...
Thumbnail Image
Item

Disturbing-free determination of yeast concentration in DI water and in glucose using impedance biochips

2020, Kiani, M., Du, N., Vogel, M., Raff, J., Hübner, U., Skorupa, I., Bürger, D., Schulz, S.E., Schmidt, O.G., Blaschke, D., Schmidt, H.

Deionized water and glucose without yeast and with yeast (Saccharomyces cerevisiae) of optical density OD600 that ranges from 4 to 16 has been put in the ring electrode region of six different types of impedance biochips and impedance has been measured in dependence on the added volume (20, 21, 22, 23, 24, 25 µL). The measured impedance of two out of the six types of biochips is strongly sensitive to the addition of both liquid without yeast and liquid with yeast and modelled impedance reveals a linear relationship between the impedance model parameters and yeast concentration. The presented biochips allow for continuous impedance measurements without interrupting the cultivation of the yeast. A multiparameter fit of the impedance model parameters allows for determining the concentration of yeast (cy) in the range from cy = 3.3 × 107 to cy = 17 × 107 cells/mL. This work shows that independent on the liquid, i.e., DI water or glucose, the impedance model parameters of the two most sensitive types of biochips with liquid without yeast and with liquid with yeast are clearly distinguishable for the two most sensitive types of biochips.