Search Results

Now showing 1 - 6 of 6
  • Item
    Observing distant objects with a multimode fiber-based holographic endoscope
    (Melville, NY : AIP Publishing, 2021) Leite, Ivo T.; Turtaev, Sergey; Boonzajer Flaes, Dirk E.; Čižmár, Tomáš
    Holographic wavefront manipulation enables converting hair-thin multimode optical fibers into minimally invasive lensless imaging instruments conveying much higher information densities than conventional endoscopes. Their most prominent applications focus on accessing delicate environments, including deep brain compartments, and recording micrometer-scale resolution images of structures in close proximity to the distal end of the instrument. Here, we introduce an alternative "far-field"endoscope capable of imaging macroscopic objects across a large depth of field. The endoscope shaft with dimensions of 0.2 × 0.4 mm2 consists of two parallel optical fibers: one for illumination and the other for signal collection. The system is optimized for speed, power efficiency, and signal quality, taking into account specific features of light transport through step-index multimode fibers. The characteristics of imaging quality are studied at distances between 20 mm and 400 mm. As a proof-of-concept, we provide imaging inside the cavities of a sweet pepper commonly used as a phantom for biomedically relevant conditions. Furthermore, we test the performance on a functioning mechanical clock, thus verifying its applicability in dynamically changing environments. With the performance reaching the standard definition of video endoscopes, this work paves the way toward the exploitation of minimally invasive holographic micro-endoscopes in clinical and diagnostics applications. © 2021 Author(s).
  • Item
    Side-view holographic endomicroscopy via a custom-terminated multimode fibre
    (Washington, DC : Soc., 2021) Silveira, Beatriz M.; Pikálek, Tomáš; Stibůrek, Miroslav; Ondráčková, Petra; Jákl, Petr; Leite, Ivo T.; Čižmár, Tomáš
    Microendoscopes based on optical fibres have recently come to the fore as promising candidates allowing in-vivo observations of otherwise inaccessible biological structures in animal models. Despite being still in its infancy, imaging can now be performed at the tip of a single multimode fibre, by relying on powerful holographic methods for light control. Fibre based endoscopy is commonly performed en face, resulting in possible damage of the specimen owing to the direct contact between the distal end of the probe and target. On this ground, we designed an all-fibre probe with an engineered termination that reduces compression and damage to the tissue under investigation upon probe insertion. The geometry of the termination brings the field of view to a plane parallel to the fibre’s longitudinal direction, conveying the probe with off-axis imaging capabilities. We show that its focusing ability also benefits from a higher numerical aperture, resulting in imaging with increased spatial resolution. The effect of probe insertion was investigated inside a tissue phantom comprising fluorescent particles suspended in agarose gel, and a comparison was established between the novel side-view probe and the standard en face fibre probe. This new concept paves the way to significantly less invasive deep-tissue imaging.
  • Item
    Orders of magnitude loss reduction in photonic bandgap fibers by engineering the core surround
    (Washington, DC : Soc., 2021) Upendar, S.; Ando, R.F.; Schmidt, M.A.; Weiss, T.
    We demonstrate how to reduce the loss in photonic bandgap fibers by orders of magnitude by varying the radius of the corner strands in the core surround. As a fundamental working principle we find that changing the corner strand radius can lead to backscattering of light into the fiber core. Selecting an optimal corner strand radius can thus reduce the loss of the fundamental core mode in a specific wavelength range by almost two orders of magnitude when compared to an unmodified cladding structure. Using the optimal corner radius for each transmission window, we observe the low-loss behavior for the first and second bandgaps, with the losses in the second bandgap being even lower than that of the first one. Our approach of reducing the confinement loss is conceptually applicable to all kinds of photonic bandgap fibers including hollow core and all-glass fibers as well as on-chip light cages. Therefore, our concept paves the way to low-loss light guidance in such systems with substantially reduced fabrication complexity.
  • Item
    Polarization-resolved second-harmonic generation imaging through a multimode fiber
    (Washington, DC : OSA, 2021) Cifuentes, Angel; Pikálek, Tomáš; Ondráčková, Petra; Amezcua-Correa, Rodrigo; Antonio-Lopez, José Enrique; Čižmár, Tomáš; Trägårdh, Johanna
    Multimode fiber-based endoscopes have recently emerged as a tool for minimally invasive endoscopy in tissue, at depths well beyond the reach of multiphoton imaging. Here, we demonstrate label-free second-harmonic generation (SHG) microscopy through such a fiber endoscope. We simultaneously fully control the excitation polarization state and the spatial distribution of the light at the fiber tip, and we use this to implement polarization-resolved SHG imaging, which allows imaging and identification of structural proteins such as collagen and myosin. We image mouse tail tendon and heart tissue, employing the endoscope at depths up to 1 mm, demonstrating that we can differentiate these structural proteins. This method has the potential for enabling instant and in situ diagnosis of tumors and fibrotic conditions in sensitive tissue with minimal damage.
  • Item
    2 MW peak power generation in fluorine co-doped Yb fiber prepared by powder-sinter technology
    (Washington, DC : Soc., 2020) Leich, Martin; Kalide, André; Eschrich, Tina; Lorenz, Adrian; Lorenz, Martin; Wondraczek, Katrin; Schönfeld, Dörte; Langner, Andreas; Schötz, Gerhard; Jäger, Matthias
    We report on the first, to the best of our knowledge, implementation of a fluorine co-doped large-mode-area REPUSIL fiber for high peak power amplification in an ultrashort-pulse master oscillator power amplifier. The core material of the investigated step-index fiber with high Yb-doping level, 52 µm core and high core-to-clad ratio of 1:4.2 was fabricated by means of the REPUSIL powder-sinter technology. The core numerical aperture was adjusted by fluorine codoping to 0.088. For achieving high beam quality and for ensuring a monolithic seed path, the LMA fiber is locally tapered. We demonstrate an Yb fiber amplifier with near-diffraction-limited beam quality of M2 = 1.3, which remains constant up to a peak power of 2 MW. This is a record for a tapered single core fiber. © 2020 Optical Society of America
  • Item
    Thermal tuning of a fiber-integrated Fabry-Pérot cavity
    (Washington, DC : Soc., 2021) Singer, Clemens; Goetz, Alexander; Prasad, Adarsh S.; Becker, Martin; Rothhardt, Manfred; Skoff, Sarah M.
    Here, we present the thermal tuning capability of an alignment-free, fiber-integrated Fabry-Pérot cavity. The two mirrors are made of fiber Bragg gratings that can be individually temperature stabilized and tuned. We show the temperature tuning of the resonance wavelength of the cavity without any degradation of the finesse and the tuning of the individual stop bands of the fiber Bragg gratings. This not only permits for the cavity’s finesse to be optimized post-fabrication but also makes this cavity applicable as a narrowband filter with a FWHM spectral width of 0.07 ± 0.02 pm and a suppression of more than -15 dB that can be wavelength tuned. Further, in the field of quantum optics, where strong light-matter interactions are desirable, quantum emitters can be coupled to such a cavity and the cavity effect can be reversibly omitted and re-established. This is particularly useful when working with solid-state quantum emitters where such a reference measurement is often not possible once an emitter has been permanently deposited inside a cavity.