Search Results

Now showing 1 - 10 of 67
  • Item
    Electron Transport across Vertical Silicon/MoS2/Graphene Heterostructures: Towards Efficient Emitter Diodes for Graphene Base Hot Electron Transistors
    (Washington, DC : ACS Publications, 2020) Belete, Melkamu; Engström, Olof; Vaziri, Sam; Lippert, Gunther; Lukosius, Mindaugas; Kataria, Satender; Lemme, Max C.
    Heterostructures comprising silicon, molybdenum disulfide (MoS2), and graphene are investigated with respect to the vertical current conduction mechanism. The measured current-voltage (I-V) characteristics exhibit temperature-dependent asymmetric current, indicating thermally activated charge carrier transport. The data are compared and fitted to a current transport model that confirms thermionic emission as the responsible transport mechanism across devices. Theoretical calculations in combination with the experimental data suggest that the heterojunction barrier from Si to MoS2 is linearly temperature-dependent for T = 200-300 K with a positive temperature coefficient. The temperature dependence may be attributed to a change in band gap difference between Si and MoS2, strain at the Si/MoS2 interface, or different electron effective masses in Si and MoS2, leading to a possible entropy change stemming from variation in density of states as electrons move from Si to MoS2. The low barrier formed between Si and MoS2 and the resultant thermionic emission demonstrated here make the present devices potential candidates as the emitter diode of graphene base hot electron transistors for future high-speed electronics. Copyright © 2020 American Chemical Society.
  • Item
    Nonlinear Optical Characterization of CsPbBr3 Nanocrystals as a Novel Material for the Integration into Electro-Optic Modulators
    (Millersville, PA : Materials Research Forum LLC, 2020) Vitale, Francesco; De Matteis, Fabio; Casalboni, Mauro; Prosposito, Paolo; Steglich, Patrick; Ksianzou, Viachaslau; Breiler, Christian; Schrader, Sigurd; Paci, Barbara; Generosi, Amanda; Prosposito, Paolo
    The present work is concerned with the investigation of the nonlinear optical response of green emissive CsPbBr3 nanocrystals, in the form of colloidal dispersions in toluene, synthesized via a room-temperature ligand-assisted supersaturation recrystallization (LASR) method. After carrying out a preliminary characterization via X-Ray Diffraction (XRD) and Absorption and Photoluminescence (PL) Spectroscopies, the optical nonlinearity of the as-obtained colloids is probed by means of a single-beam Z-scan setup. Results show that the material in question, within the sensitivity of the experimental apparatus, exhibits a nonlinear refractive index n2 that is the order of 10-15 cm2/W. Moreover, a three-photon absorption mechanism (3PA) is postulated, according to the fitting of the recorded Z-scan traces and the fundamental absorption threshold, which turns out to be off resonance with twice the energy of the laser radiation. A figure of merit is, then, calculated as an indicator of the quality of the CsPbBr3 nanocrystals as a candidate material for photonic devices, for instance, Kerr-like electro-optic modulators (EOMs).
  • Item
    Enhanced thermal stability of yttrium oxide-based RRAM devices with inhomogeneous Schottky-barrier
    (Melville, NY : American Inst. of Physics, 2020) Piros, Eszter; Petzold, Stefan; Zintler, Alexander; Kaiser, Nico; Vogel, Tobias; Eilhardt, Robert; Wenger, Christian; Molina-Luna, Leopoldo; Alff, Lambert
    This work addresses the thermal stability of bipolar resistive switching in yttrium oxide-based resistive random access memory revealed through the temperature dependence of the DC switching behavior. The operation voltages, current levels, and charge transport mechanisms are investigated at 25 °C, 85 °C, and 125 °C, and show overall good temperature immunity. The set and reset voltages, as well as the device resistance in both the high and low resistive states, are found to scale inversely with increasing temperatures. The Schottky-barrier height was observed to increase from approximately 1.02 eV at 25 °C to approximately 1.35 eV at 125 °C, an uncommon behavior explained by interface phenomena. © 2020 Author(s).
  • Item
    A comprehensive study of charge transport in Au-contacted graphene on Ge/Si(001)
    (Melville, NY : American Inst. of Physics, 2020) Sinterhauf, Anna; Bode, Simeon; Auge, Manuel; Lukosius, Mindaugas; Lippert, Gunther; Hofsäss, Hans-Christian; Wenderoth, Martin
    We investigate the electronic transport properties of Au-contacted graphene on Ge/Si(001). Kelvin probe force microscopy at room temperature with an additionally applied electric transport field is used to gain a comprehensive understanding of macroscopic transport measurements. In particular, we analyze the contact pads including the transition region, perform local transport measurements in pristine graphene/Germanium, and explore the role of the semiconducting Germanium substrate. We connect the results from these local scale measurements with the macroscopic performance of the device. We find that a graphene sheet on a 2 μm Ge film carries approximately 10% of the current flowing through the device. Moreover, we show that an electronic transition region forms directly adjacent to the contact pads. This transition region is characterized by a width of >100 μm and a strongly increased sheet resistance acting as the bottleneck for charge transport. Based on Rutherford backscattering of the contact pads, we suggest that the formation of this transition region is caused by diffusion. © 2020 Author(s).
  • Item
    Artificial intelligence in marketing: friend or foe of sustainable consumption?
    (London : Springer, 2021) Hermann, Erik
    [No abstract available]
  • Item
    AC electrokinetic immobilization of organic dye molecules
    (Berlin [u.a.] : Springer, 2020) Laux, Eva-Maria; Wenger, Christian; Bier, Frank F.; Hölzel, Ralph
    The application of inhomogeneous AC electric fields for molecular immobilization is a very fast and simple method that does not require any adaptions to the molecule’s functional groups or charges. Here, the method is applied to a completely new category of molecules: small organic fluorescence dyes, whose dimensions amount to only 1 nm or even less. The presented setup and the electric field parameters used allow immobilization of dye molecules on the whole electrode surface as opposed to pure dielectrophoretic applications, where molecules are attracted only to regions of high electric field gradients, i.e., to the electrode tips and edges. In addition to dielectrophoresis and AC electrokinetic flow, molecular scale interactions and electrophoresis at short time scales are discussed as further mechanisms leading to migration and immobilization of the molecules. [Figure not available: see fulltext.] © 2020, The Author(s).
  • Item
    Design, implementation, evaluation and application of a 32-channel radio frequency signal generator for thermal magnetic resonance based anti-cancer treatment
    (Basel : MDPI AG, 2020) Han, Haopeng; Eigentler, Thomas Wilhelm; Wang, Shuailin; Kretov, Egor; Winter, Lukas; Hoffmann, Werner; Grass, Eckhard; Niendorf, Thoralf
    Thermal Magnetic Resonance (ThermalMR) leverages radio frequency (RF)-induced heating to examine the role of temperature in biological systems and disease. To advance RF heating with multi-channel RF antenna arrays and overcome the shortcomings of current RF signal sources, this work reports on a 32-channel modular signal generator (SGPLL). The SGPLL was designed around phase-locked loop (PLL) chips and a field-programmable gate array chip. To examine the system properties, switching/settling times, accuracy of RF power level and phase shifting were characterized. Electric field manipulation was successfully demonstrated in deionized water. RF heating was conducted in a phantom setup using self-grounded bow-tie RF antennae driven by the SGPLL. Commercial signal generators limited to a lower number of RF channels were used for comparison. RF heating was evaluated with numerical temperature simulations and experimentally validated with MR thermometry. Numerical temperature simulations and heating experiments controlled by the SGPLL revealed the same RF interference patterns. Upon RF heating similar temperature changes across the phantom were observed for the SGPLL and for the commercial devices. To conclude, this work presents the first 32-channel modular signal source for RF heating. The large number of coherent RF channels, wide frequency range and accurate phase shift provided by the SGPLL form a technological basis for ThermalMR controlled hyperthermia anti-cancer treatment. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Intersubband Transition Engineering in the Conduction Band of Asymmetric Coupled Ge/SiGe Quantum Wells
    (Basel : MDPI, 2020) Persichetti, Luca; Montanari, Michele; Ciano, Chiara; Di Gaspare, Luciana; Ortolani, Michele; Baldassarre, Leonetta; Zoellner, Marvin; Mukherjee, Samik; Moutanabbir, Oussama; Capellini, Giovanni; Virgilio, Michele; De Seta, Monica
    n-type Ge/SiGe asymmetric coupled quantum wells represent the building block of a variety of nanoscale quantum devices, including recently proposed designs for a silicon-based THz quantum cascade laser. In this paper, we combine structural and spectroscopic experiments on 20-module superstructures, each featuring two Ge wells coupled through a Ge-rich SiGe tunnel barrier, as a function of the geometry parameters of the design and the P dopant concentration. Through a comparison of THz spectroscopic data with numerical calculations of intersubband optical absorption resonances, we demonstrated that it is possible to tune, by design, the energy and the spatial overlap of quantum confined subbands in the conduction band of the heterostructures. The high structural/interface quality of the samples and the control achieved on subband hybridization are promising starting points towards a working electrically pumped light-emitting device. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    On the Complexity of Attacking Elliptic Curve Based Authentication Chips
    (Amsterdam [u.a.] : Elsevier, 2021) Kabin, Ievgen; Dyka, Zoya; Klann, Dan; Schaeffner, Jan; Langendoerfer, Peter
    In this paper we discuss the difficulties of mounting successful attacks against crypto implementations if essential information is missing. We start with a detailed description of our attack against our own design, to highlight which information is needed to increase the success of an attack, i.e. we use it as a blueprint to the following attack against commercially available crypto chips. We would like to stress that our attack against our own design is very similar to what happens during certification e.g. according to the Common Criteria Standard as in those cases the manufacturer needs to provide detailed information. If attacking commercial designs without signing NDAs, we were forced to intensively search the Internet for information about the designs. We were able to reveal information on the processing sequence during the authentication process even as detailed as identifying the clock cycles in which the individual key bits are processed. But we could not reveal the private keys used by the attacked commercial authentication chips 100% correctly. Moreover, as we did not knew the used keys we could not evaluate the success of our attack. To summarize, the effort of such an attack is significantly higher than the one of attacking a well-known implementation.
  • Item
    Dielectrophoretic Immobilization of Yeast Cells Using CMOS Integrated Microfluidics
    (Basel : MDPI AG, 2020) Ettehad, Honeyeh Matbaechi; Soltani Zarrin, Pouya; Hölzel, Ralph; Wenger, Christian
    This paper presents a dielectrophoretic system for the immobilization and separation of live and dead cells. Dielectrophoresis (DEP) is a promising and efficient investigation technique for the development of novel lab-on-a-chip devices, which characterizes cells or particles based on their intrinsic and physical properties. Using this method, specific cells can be isolated from their medium carrier or the mixture of cell suspensions (e.g., separation of viable cells from non-viable cells). Main advantages of this method, which makes it favorable for disease (blood) analysis and diagnostic applications are, the preservation of the cell properties during measurements, label-free cell identification, and low set up cost. In this study, we validated the capability of complementary metal-oxide-semiconductor (CMOS) integrated microfluidic devices for the manipulation and characterization of live and dead yeast cells using dielectrophoretic forces. This approach successfully trapped live yeast cells and purified them from dead cells. Numerical simulations based on a two-layer model for yeast cells flowing in the channel were used to predict the trajectories of the cells with respect to their dielectric properties, varying excitation voltage, and frequency.