Search Results

Now showing 1 - 6 of 6
  • Item
    Artificial intelligence in marketing: friend or foe of sustainable consumption?
    (London : Springer, 2021) Hermann, Erik
    [No abstract available]
  • Item
    Resistance of the Montgomery Ladder Against Simple SCA: Theory and Practice
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2021) Kabin, Ievgen; Dyka, Zoya; Klann, Dan; Aftowicz, Marcin; Langendoerfer, Peter
    The Montgomery kP algorithm i.e. the Montgomery ladder is reported in literature as resistant against simple SCA due to the fact that the processing of each key bit value of the scalar k is done using the same sequence of operations. We implemented the Montgomery kP algorithm using Lopez-Dahab projective coordinates for the NIST elliptic curve B-233. We instantiated the same VHDL code for a wide range of clock frequencies for the same target FPGA and using the same compiler options. We measured electromagnetic traces of the kP executions using the same input data, i.e. scalar k and elliptic curve point P, and measurement setup. Additionally, we synthesized the same VHDL code for two IHP CMOS technologies, for a broad spectrum of frequencies. We simulated the power consumption of each synthesized design during an execution of the kP operation, always using the same scalar k and elliptic curve point P as inputs. Our experiments clearly show that the success of simple electromagnetic analysis attacks against FPGA implementations as well as the one of simple power analysis attacks against synthesized ASIC designs depends on the target frequency for which the design was implemented and at which it is executed significantly. In our experiments the scalar k was successfully revealed via simple visual inspection of the electromagnetic traces of the FPGA for frequencies from 40 to 100 MHz when standard compile options were used as well as from 50 MHz up to 240 MHz when performance optimizing compile options were used. We obtained similar results attacking the power traces simulated for the ASIC. Despite the significant differences of the here investigated technologies the designs’ resistance against the attacks performed is similar: only a few points in the traces represent strong leakage sources allowing to reveal the key at very low and very high frequencies. For the “middle” frequencies the number of points which allow to successfully reveal the key increases when increasing the frequency.
  • Item
    Resilience in the Cyberworld: Definitions, Features and Models
    (Basel : MDPI, 2021) Vogel, Elisabeth; Dyka, Zoya; Klann, Dan; Langendörfer, Peter
    Resilience is a feature that is gaining more and more attention in computer science and computer engineering. However, the definition of resilience for the cyber landscape, especially embedded systems, is not yet clear. This paper discusses definitions provided by different authors, on different years and with different application areas the field of computer science/computer engineering. We identify the core statements that are more or less common to the majority of the definitions, and based on this we give a holistic definition using attributes for (cyber-) resilience. In order to pave a way towards resilience engineering, we discuss a theoretical model of the life cycle of a (cyber-) resilient system that consists of key actions presented in the literature. We adapt this model for embedded (cyber-) resilient systems.
  • Item
    Dual-Band Transmitter and Receiver With Bowtie-Antenna in 0.13 μm SiGe BiCMOS for Gas Spectroscopy at 222 - 270 GHz
    (New York, NY : IEEE, 2021) Schmalz, Klaus; Rothbart, Nick; Gluck, Alexandra; Eissa, Mohamed Hussein; Mausolf, Thomas; Turkmen, Esref; Yilmaz, Selahattin Berk; Hubers, Heinz-Wilhelm
    This paper presents a transmitter (TX) and a receiver (RX) with bowtie-antenna and silicon lens for gas spectroscopy at 222-270 GHz, which are fabricated in IHP's 0.13 μm SiGe BiCMOS technology. The TX and RX use two integrated local oscillators for 222 - 256 GHz and 250 - 270 GHz, which are switched for dual-band operation. Due to its directivity of about 27 dBi, the single integrated bowtie-antenna with silicon lens enables an EIRP of about 25 dBm for the TX, and therefore a considerably higher EIRP for the 2-band TX compared to previously reported systems. The double sideband noise temperature of the RX is 20,000 K (18.5 dB noise figure) as measured by the Y-factor method. Absorption spectroscopy of gaseous methanol is used as a measure for the performance of the gas spectroscopy system with TX- and RX-modules.
  • Item
    A TOPSIS-Assisted Feature Selection Scheme and SOM-Based Anomaly Detection for Milling Tools Under Different Operating Conditions
    (New York, NY : IEEE, 2021) Assafo, Maryam; Langendorfer, Peter
    Anomaly detection modeled as a one-class classification is an essential task for tool condition monitoring (TCM) when only the normal data are available. To confront with the real-world settings, it is crucial to take the different operating conditions, e.g., rotation speed, into account when approaching TCM solutions. This work mainly addresses issues related to multi-operating-condition TCM models, namely the varying discriminability of sensory features with different operating conditions; the overlap between normal and anomalous data; and the complex structure of input data. A feature selection scheme is proposed in which the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is presented as a tool to aid the multi-objective selection of sensory features. In addition, four anomaly detection approaches based on Self-Organizing Map (SOM) are studied. To examine the stability of the four approaches, they are applied on different single-operating-condition models. Further, to examine their robustness when dealing with complex data structures, they are applied on multi-operating-condition models. The experimental results using the NASA Milling Data Set showed that all the studied anomaly detection approaches achieved a higher assessment accuracy with our feature selection scheme as compared to the Principal Component Analysis (PCA), Laplacian Score (LS), and extended LS in which we added a final step to the original LS method in order to eliminate redundant features.
  • Item
    Synchronization in 5G networks: a hybrid Bayesian approach toward clock offset/skew estimation and its impact on localization
    (Heidelberg : Springer, 2021) Goodarzi, Meysam; Cvetkovski, Darko; Maletic, Nebojsa; Gutiérrez, Jesús; Grass, Eckhard
    Clock synchronization has always been a major challenge when designing wireless networks. This work focuses on tackling the time synchronization problem in 5G networks by adopting a hybrid Bayesian approach for clock offset and skew estimation. Furthermore, we provide an in-depth analysis of the impact of the proposed approach on a synchronization-sensitive service, i.e., localization. Specifically, we expose the substantial benefit of belief propagation (BP) running on factor graphs (FGs) in achieving precise network-wide synchronization. Moreover, we take advantage of Bayesian recursive filtering (BRF) to mitigate the time-stamping error in pairwise synchronization. Finally, we reveal the merit of hybrid synchronization by dividing a large-scale network into local synchronization domains and applying the most suitable synchronization algorithm (BP- or BRF-based) on each domain. The performance of the hybrid approach is then evaluated in terms of the root mean square errors (RMSEs) of the clock offset, clock skew, and the position estimation. According to the simulations, in spite of the simplifications in the hybrid approach, RMSEs of clock offset, clock skew, and position estimation remain below 10 ns, 1 ppm, and 1.5 m, respectively.