Search Results

Now showing 1 - 9 of 9
Loading...
Thumbnail Image
Item

Revealing all states of dewetting of a thin gold layer on a silicon surface by nanosecond laser conditioning

2021, Ernst, Owen C., Uebel, David, Kayser, Stefan, Lange, Felix, Teubner, Thomas, Boeck, Torsten

Dewetting is a ubiquitous phenomenon which can be applied to the laser synthesis of nanoparticles. A classical spinodal dewetting process takes place in four successive states, which differ from each other in their morphology. In this study all states are revealed by interaction of pulsed nanosecond UV laser light with thin gold layers with thicknesses between 1 nm and 10 nm on (100) silicon wafers. The specific morphologies of the dewetting states are discussed with particular emphasis on the state boundaries. The main parameter determining which state is formed is not the duration for which the gold remains liquid, but rather the input energy provided by the laser. This shows that each state transition has a separate measurable activation energy. The temperature during the nanosecond pulses and the duration during which the gold remains liquid was determined by simulation using the COMSOL Multiphysics® software package. Using these calculations, an accurate local temperature profile and its development over time was simulated. An analytical study of the morphologies and formed structures was performed using Minkowski measures. With aid of this tool, the laser induced structures were compared with thermally annealed samples, with perfectly ordered structures and with perfectly random structures. The results show that both, structures of the laser induced and the annealed samples, strongly resemble the perfectly ordered structures. This reveals a close relationship between these structures and suggests that the phenomenon under investigation is indeed a spinodal dewetting generated by an internal material wave function. The purposeful generation of these structures and the elucidation of the underlying mechanism of dewetting by short pulse lasers may assist the realisation of various technical elements such as nanowires in science and industry. © 2020

Loading...
Thumbnail Image
Item

Recent developments of stamped planar micro-supercapacitors: Materials, fabrication and perspectives

2021, Li, Fei, Li, Yang, Qu, Jiang, Wang, Jinhui, Bandari, Vineeth Kumar, Zhu, Feng, Schmidt, Oliver G.

The rapid development of wearable and portable electronics has dramatically increased the application for miniaturized energy storage components. Stamping micro-supercapacitors (MSCs) with planar interdigital configurations are considered as a promising candidate to meet the requirements. In this review, recent progress of the different stamping materials and various stamping technologies are first discussed. The merits of each material, manufacturing process of each stamping method and the properties of stamping MSCs are scrutinized, respectively. Further insights on technical difficulties and scientific challenges are finally demonstrated, including the limited thickness of printed electrodes, poor overlay accuracy and printing resolution.

Loading...
Thumbnail Image
Item

Dry etching of monocrystalline silicon using a laser-induced reactive micro plasma

2021, Heinke, Robert, Ehrhardt, Martin, Lorenz, Pierre, Zimmer, Klaus

Dry etching is a prevalent technique for pattern transfer and material removal in microelectronics, optics and photonics due to its high precision material removal with low surface and subsurface damage. These processes, including reactive ion etching (RIE) and plasma etching (PE), are performed at vacuum conditions and provide high selectivity and vertical side wall etched patterns but create high costs and efforts in maintenance due to the required machinery. In contrast to electrically generated plasmas, laser-induced micro plasmas are controllable sources of reactive species in gases at atmospheric pressure that can be used for dry etching of materials. In the present study, we have demonstrated the laser-induced plasma etching of monocrystalline silicon. A Ti:Sapphire laser has been used for igniting an optically pumped plasma in a CF4/O2 gas mixture near atmospheric pressure. The influence of process parameters, like substrate temperature, O2 concentration, plasma-surface distance, etching duration, pulse energy and crystal orientation on etching rate and surface morphology has been investigated. Typical etching rates of 2–12 µm x min−1 can be achieved by varying mentioned parameters with a decreasing etching rate during the process. Different morphologies can be observed due to the parameters set, smooth as well as rough surfaces or even inverted pyramids. The presented etching method provides an approach for precise machining of silicon surfaces with good surface qualities near atmospheric pressure and sufficiently high material removal rates for ultraprecise surface machining. © 2021 The Author(s)

Loading...
Thumbnail Image
Item

Low-power emerging memristive designs towards secure hardware systems for applications in internet of things

2021, Du, Nan, Schmidt, Heidemarie, Polian, Ilia

Emerging memristive devices offer enormous advantages for applications such as non-volatile memories and in-memory computing (IMC), but there is a rising interest in using memristive technologies for security applications in the era of internet of things (IoT). In this review article, for achieving secure hardware systems in IoT, low-power design techniques based on emerging memristive technology for hardware security primitives/systems are presented. By reviewing the state-of-the-art in three highlighted memristive application areas, i.e. memristive non-volatile memory, memristive reconfigurable logic computing and memristive artificial intelligent computing, their application-level impacts on the novel implementations of secret key generation, crypto functions and machine learning attacks are explored, respectively. For the low-power security applications in IoT, it is essential to understand how to best realize cryptographic circuitry using memristive circuitries, and to assess the implications of memristive crypto implementations on security and to develop novel computing paradigms that will enhance their security. This review article aims to help researchers to explore security solutions, to analyze new possible threats and to develop corresponding protections for the secure hardware systems based on low-cost memristive circuit designs.

Loading...
Thumbnail Image
Item

Heat accumulation during femtosecond laser treatment at high repetition rate – A morphological, chemical and crystallographic characterization of self-organized structures on Ti6Al4V

2021, Schnell, Georg, Lund, Henrik, Bartling, Stephan, Polley, Christian, Riaz, Abdullah, Senz, Volkmar, Springer, Armin, Seitz, Hermann

This study presents a detailed characterization of self-organized nano- and microstructures on Ti6Al4V evoked by different scanning strategies and fluences with a 300 fs laser operating at a laser wavelength of 1030 nm. The resulting surface morphology was visualized via field emission scanning electron microscopy (FEG-SEM) images of the surface and cross-sections. X-ray diffraction (XRD)-analysis was performed to analyse changes in crystal structures. The chemical surface composition of the near-surface layer was determined by X-ray photoelectron spectroscopy (XPS). Results show a significant influence of heat accumulation while processing with high laser repetition rates on the formation, crystallinity and chemical composition of self-organized structures depending on the scanning strategy. The ablation with different laser scanning strategies led to varying dynamics of growth-mechanisms of self-organized structures, formation of intermetallic phases (Ti3Al), sub-oxides and oxides (Ti6O, TiO) as well as ions (Ti3+, Ti4+) in surface layer reliant on applied fluence. Furthermore, investigations revealed a heat-affected zone up to several micrometers in non-ablated material. © 2021 The Authors

Loading...
Thumbnail Image
Item

Advanced architecture designs towards high-performance 3D microbatteries

2021, Li, Yang, Qu, Jiang, Li, Fei, Qu, Zhe, Tang, Hongmei, Liu, Lixiang, Zhu, Minshen, Schmidt, Oliver G.

Rechargeable microbatteries are important power supplies for microelectronic devices. Two essential targets for rechargeable microbatteries are high output energy and minimal footprint areas. In addition to the development of new high-performance electrode materials, the device configurations of microbatteries also play an important role in enhancing the output energy and miniaturizing the footprint area. To make a clear vision on the design principle of rechargeable microbatteries, we firstly summarize the typical configurations of microbatteries. The advantages of different configurations are thoroughly discussed from the aspects of fabrication technologies and material engineering. Towards the high energy output at a minimal footprint area, a revolutionary design for microbatteries is of great importance. In this perspective, we review the progress of fabricating microbatteries based on the rolled-up nanotechnology, a derivative origami technology. Finally, we discussed the challenges and perspectives in the device design and materials optimization.

Loading...
Thumbnail Image
Item

Nano energy for miniaturized systems

2021, Zhu, Minshen, Zhu, Feng, Schmidt, Oliver G.

Skin mountable electronic devices are in a high-speed development at the crossroads of materials science, electronics, and computer science. Sophisticated functions, such as sensing, actuating, and computing, are integrated into a soft electronic device that can be firmly mounted to any place of human body. These advanced electronic devices are capable of yielding abilities for us whenever they are needed and even expanding our abilities beyond their natural limitations. Despite the great promise of skin mounted electronic devices, they still lack satisfactory power supplies that are safe and continuous. This Perspective discusses the prospects of the development of energy storage devices for the next generation skin mountable electronic devices based on their unique requirements on flexibility and miniaturized size.

Loading...
Thumbnail Image
Item

On the viscous dissipation caused by randomly rough indenters in smooth sliding motion

2021, Sukhomlinov, Sergey, Müser, Martin H.

The viscous dissipation between rigid, randomly rough indenters and linearly elastic counter bodies sliding past them is investigated using Green’s function molecular dynamics. The study encompasses a variety of models differing in the height spectra properties of the rigid indenter, in the viscoelasticity of the elastomer, and in their interaction. All systems reveal the expected damping linear in sliding velocity at small and a pronounced maximum at intermediate . Persson’s theory of rubber friction, which is adopted to the studied model systems, reflects all observed trends. However, close quantitative agreement is only found up to intermediate sliding velocities. Relative errors in the friction force become significant once the contact area is substantially reduced by sliding.

Loading...
Thumbnail Image
Item

Editorial for a special issue “Nano energy materials and devices for miniaturized electronics and smart systems”

2021, Zhu, Feng, Schmidt, Oliver G.

[No abstract available]