Search Results

Now showing 1 - 2 of 2
  • Item
    Biomaterial based strategies to reconstruct the nigrostriatal pathway in organotypic slice co-cultures
    (Amsterdam [u.a.] : Elsevier, 2021) Ucar, Buket; Kajtez, Janko; Foidl, Bettina M.; Eigel, Dimitri; Werner, Carsten; Long, Katherine R.; Emnéus, Jenny; Bizeau, Joëlle; Lomora, Mihai; Pandit, Abhay; Newland, Ben; Humpel, Christian
    Protection or repair of the nigrostriatal pathway represents a principal disease-modifying therapeutic strategy for Parkinson's disease (PD). Glial cell line-derived neurotrophic factor (GDNF) holds great therapeutic potential for PD, but its efficacious delivery remains difficult. The aim of this study was to evaluate the potential of different biomaterials (hydrogels, microspheres, cryogels and microcontact printed surfaces) for reconstructing the nigrostriatal pathway in organotypic co-culture of ventral mesencephalon and dorsal striatum. The biomaterials (either alone or loaded with GDNF) were locally applied onto the brain co-slices and fiber growth between the co-slices was evaluated after three weeks in culture based on staining for tyrosine hydroxylase (TH). Collagen hydrogels loaded with GDNF slightly promoted the TH+ nerve fiber growth towards the dorsal striatum, while GDNF loaded microspheres embedded within the hydrogels did not provide an improvement. Cryogels alone or loaded with GDNF also enhanced TH+ fiber growth. Lines of GDNF immobilized onto the membrane inserts via microcontact printing also significantly improved TH+ fiber growth. In conclusion, this study shows that various biomaterials and tissue engineering techniques can be employed to regenerate the nigrostriatal pathway in organotypic brain slices. This comparison of techniques highlights the relative merits of different technologies that researchers can use/develop for neuronal regeneration strategies. © 2020
  • Item
    The effect of Ti or Zr additions on the microstructure and magnetic properties of MnAl-C alloys
    (Amsterdam [u.a.] : Elsevier, 2021) Feng, L.; Nielsch, K.; Woodcock, T.
    As-transformed and hot-deformed samples of MnAl-C alloys with Ti or Zr additions have been produced and characterized using magnetometry, X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Both Ti and Zr additions in MnAl-C alloys form carbide primary phases, TiC and ZrC, which consume the carbon meant to be dissolved in the metastable τ-phase to stabilize it against decomposition. With these two additions, the Curie temperature of τ-phase increases while its stability against decomposition decreases. After hot deformation, the MnAl-C alloys with Ti or Zr additions have lower polarisation and remanence due to the reduced stability of the τ-phase. Adding extra carbon along with Ti to a MnAl-C alloy in order to compensate for the C lost on formation of TiC restored the original stability of the τ-phase. After hot-deformation, this alloy exhibited a lower polarisation and remanence owing to the unexpected formation of the γ2-phase.