Search Results

Now showing 1 - 3 of 3
  • Item
    Singlet-Oxygen-Induced Phospholipase A2 Inhibition: A Major Role for Interfacial Tryptophan Dioxidation
    (Weinheim : Wiley-VCH, 2021) Nasri, Zahra; Memari, Seyedali; Wenske, Sebastian; Clemen, Ramona; Martens, Ulrike; Delcea, Mihaela; Bekeschus, Sander; Weltmann, Klaus-Dieter; von Woedtke, Thomas; Wende, Kristian
    Several studies have revealed that various diseases such as cancer have been associated with elevated phospholipase A2 (PLA2) activity. Therefore, the regulation of PLA2 catalytic activity is undoubtedly vital. In this study, effective inactivation of PLA2 due to reactive species produced from cold physical plasma as a source to model oxidative stress is reported. We found singlet oxygen to be the most relevant active agent in PLA2 inhibition. A more detailed analysis of the plasma-treated PLA2 identified tryptophan 128 as a hot spot, rich in double oxidation. The significant dioxidation of this interfacial tryptophan resulted in an N-formylkynurenine product via the oxidative opening of the tryptophan indole ring. Molecular dynamics simulation indicated that the efficient interactions between the tryptophan residue and phospholipids are eliminated following tryptophan dioxidation. As interfacial tryptophan residues are predominantly involved in the attaching of membrane enzymes to the bilayers, tryptophan dioxidation and indole ring opening leads to the loss of essential interactions for enzyme binding and, consequently, enzyme inactivation. © 2021 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH
  • Item
    Supercritical fluid extraction-supercritical fluid chromatography of saliva: Single-quadrupole mass spectrometry monitoring of caffeine for gastric emptying studies†
    (Weinheim : Wiley-VCH, 2021) Hofstetter, Robert K.; Schulig, Lukas; Bethmann, Jonas; Grimm, Michael; Sager, Maximilian; Aude, Philipp; Keßler, Rebecca; Kim, Simon; Weitschies, Werner; Link, Andreas
    Saliva is an attractive sampling matrix for measuring various endogenous and exogeneous substances but requires sample treatment prior to chromatographic analysis. Exploiting supercritical CO2 for both extraction and chromatography simplifies sample preparation, reduces organic solvent consumption, and minimizes exposure to potentially infectious samples, but has not yet been applied to oral fluid. Here, we demonstrate the feasibility and benefits of online supercritical fluid extraction coupled to supercritical fluid chromatography and single-quadrupole mass spectrometry for monitoring the model salivary tracer caffeine. A comparison of 13C- and 32S-labeled internal standards with external standard calibration confirmed the superiority of stable isotope-labeled caffeine over nonanalogous internal standards. As proof of concept, the validated method was applied to saliva from a magnetic resonance imaging study of gastric emptying. After administration of 35 mg caffeine via ice capsule, salivary levels correlated with magnetic resonance imaging data, corroborating caffeine's usefulness as tracer of gastric emptying (R2 = 0.945). In contrast to off-line methods, online quantification required only minute amounts of organic solvents and a single manual operation prior to online bioanalysis of saliva, thus demonstrating the usefulness of CO2-based extraction and separation techniques for potentially infective biomatrices.
  • Item
    Electrically Conductive and 3D-Printable Oxidized Alginate-Gelatin Polypyrrole: PSS Hydrogels for Tissue Engineering
    (Weinheim : Wiley-VCH, 2021) Distler, Thomas; Polley, Christian; Shi, Fukun; Schneidereit, Dominik; Ashton, Mark D.; Friedrich, Oliver; Kolb, Jürgen F.; Hardy, John G.; Detsch, Rainer; Seitz, Hermann; Boccaccini, Aldo R.
    Electroactive hydrogels can be used to influence cell response and maturation by electrical stimulation. However, hydrogel formulations which are 3D printable, electroactive, cytocompatible, and allow cell adhesion, remain a challenge in the design of such stimuli-responsive biomaterials for tissue engineering. Here, a combination of pyrrole with a high gelatin-content oxidized alginate-gelatin (ADA-GEL) hydrogel is reported, offering 3D-printability of hydrogel precursors to prepare cytocompatible and electrically conductive hydrogel scaffolds. By oxidation of pyrrole, electroactive polypyrrole:polystyrenesulfonate (PPy:PSS) is synthesized inside the ADA-GEL matrix. The hydrogels are assessed regarding their electrical/mechanical properties, 3D-printability, and cytocompatibility. It is possible to prepare open-porous scaffolds via bioplotting which are electrically conductive and have a higher cell seeding efficiency in scaffold depth in comparison to flat 2D hydrogels, which is confirmed via multiphoton fluorescence microscopy. The formation of an interpenetrating polypyrrole matrix in the hydrogel matrix increases the conductivity and stiffness of the hydrogels, maintaining the capacity of the gels to promote cell adhesion and proliferation. The results demonstrate that a 3D-printable ADA-GEL can be rendered conductive (ADA-GEL-PPy:PSS), and that such hydrogel formulations have promise for cell therapies, in vitro cell culture, and electrical-stimulation assisted tissue engineering. © 2021 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH