Search Results

Now showing 1 - 10 of 18
  • Item
    Surface-Enhanced Raman Spectroscopy to Characterize Different Fractions of Extracellular Vesicles from Control and Prostate Cancer Patients
    (Basel : MDPI, 2021) Osei, Eric Boateng; Paniushkina, Liliia; Wilhelm, Konrad; Popp, Jürgen; Nazarenko, Irina; Krafft, Christoph
    Extracellular vesicles (EVs) are membrane-enclosed structures ranging in size from about 60 to 800 nm that are released by the cells into the extracellular space; they have attracted interest as easily available biomarkers for cancer diagnostics. In this study, EVs from plasma of control and prostate cancer patients were fractionated by differential centrifugation at 5000× g, 12,000× g and 120,000× g. The remaining supernatants were purified by ultrafiltration to produce EV-depleted free-circulating (fc) fractions. Spontaneous Raman and surface-enhanced Raman spectroscopy (SERS) at 785 nm excitation using silver nanoparticles (AgNPs) were employed as label-free techniques to collect fingerprint spectra and identify the fractions that best discriminate between control and cancer patients. SERS spectra from 10 µL droplets showed an enhanced Raman signature of EV-enriched fractions that were much more intense for cancer patients than controls. The Raman spectra of dehydrated pellets of EV-enriched fractions without AgNPs were dominated by spectral contributions of proteins and showed variations in S-S stretch, tryptophan and protein secondary structure bands between control and cancer fractions. We conclude that the AgNPs-mediated SERS effect strongly enhances Raman bands in EV-enriched fractions, and the fractions, EV12 and EV120 provide the best separation of cancer and control patients by Raman and SERS spectra.
  • Item
    Fiber-based SORS-SERDS system and chemometrics for the diagnostics and therapy monitoring of psoriasis inflammatory disease in vivo
    (Washington, DC : Optica, 2021-1-28) Schleusener, Johannes; Guo, Shuxia; Darvin, Maxim E.; Thiede, Gisela; Chernavskaia, Olga; Knorr, Florian; Lademann, Jürgen; Popp, Jürgen; Bocklitz, Thomas W.
    Psoriasis is considered a widespread dermatological disease that can strongly affect the quality of life. Currently, the treatment is continued until the skin surface appears clinically healed. However, lesions appearing normal may contain modifications in deeper layers. To terminate the treatment too early can highly increase the risk of relapses. Therefore, techniques are needed for a better knowledge of the treatment process, especially to detect the lesion modifications in deeper layers. In this study, we developed a fiber-based SORS-SERDS system in combination with machine learning algorithms to non-invasively determine the treatment efficiency of psoriasis. The system was designed to acquire Raman spectra from three different depths into the skin, which provide rich information about the skin modifications in deeper layers. This way, it is expected to prevent the occurrence of relapses in case of a too short treatment. The method was verified with a study of 24 patients upon their two visits: the data is acquired at the beginning of a standard treatment (visit 1) and four months afterwards (visit 2). A mean sensitivity of ≥85% was achieved to distinguish psoriasis from normal skin at visit 1. At visit 2, where the patients were healed according to the clinical appearance, the mean sensitivity was ≈65%.
  • Item
    Targeted delivery of a phosphoinositide 3-kinase γ inhibitor to restore organ function in sepsis
    (Heidelberg : EMBO Press, 2021) Press, Adrian T.; Babic, Petra; Hoffmann, Bianca; Müller, Tina; Foo, Wanling; Hauswald, Walter; Benecke, Jovana; Beretta, Martina; Cseresnyés, Zoltán; Hoeppener, Stephanie; Nischang, Ivo; Coldewey, Sina M.; Gräler, Markus H.; Bauer, Reinhard; Gonnert, Falk; Gaßler, Nikolaus; Wetzker, Reinhard; Figge, Marc Thilo; Schubert, Ulrich S.; Bauer, Michael
    Jaundice, the clinical hallmark of infection-associated liver dysfunction, reflects altered membrane organization of the canalicular pole of hepatocytes and portends poor outcomes. Mice lacking phosphoinositide 3-kinase-γ (PI3Kγ) are protected against membrane disintegration and hepatic excretory dysfunction. However, they exhibit a severe immune defect that hinders neutrophil recruitment to sites of infection. To exploit the therapeutic potential of PI3Kγ inhibition in sepsis, a targeted approach to deliver drugs to hepatic parenchymal cells without compromising other cells, in particular immune cells, seems warranted. Here, we demonstrate that nanocarriers functionalized through DY-635, a fluorescent polymethine dye, and a ligand of organic anion transporters can selectively deliver therapeutics to hepatic parenchymal cells. Applying this strategy to a murine model of sepsis, we observed the PI3Kγ-dependent restoration of biliary canalicular architecture, maintained excretory liver function, and improved survival without impairing host defense mechanisms. This strategy carries the potential to expand targeted nanomedicines to disease entities with systemic inflammation and concomitantly impaired barrier functionality.
  • Item
    FLIM data analysis based on Laguerre polynomial decomposition and machine-learning
    (Bellingham, Wash. : SPIE, 2021) Guo, Shuxia; Silge, Anja; Bae, Hyeonsoo; Tolstik, Tatiana; Meyer, Tobias; Matziolis, Georg; Schmitt, Michael; Popp, Jürgen; Bocklitz, Thomas
    Significance: The potential of fluorescence lifetime imaging microscopy (FLIM) is recently being recognized, especially in biological studies. However, FLIM does not directly measure the lifetimes, rather it records the fluorescence decay traces. The lifetimes and/or abundances have to be estimated from these traces during the phase of data processing. To precisely estimate these parameters is challenging and requires a well-designed computer program. Conventionally employed methods, which are based on curve fitting, are computationally expensive and limited in performance especially for highly noisy FLIM data. The graphical analysis, while free of fit, requires calibration samples for a quantitative analysis. Aim: We propose to extract the lifetimes and abundances directly from the decay traces through machine learning (ML). Approach: The ML-based approach was verified with simulated testing data in which the lifetimes and abundances were known exactly. Thereafter, we compared its performance with the commercial software SPCImage based on datasets measured from biological samples on a time-correlated single photon counting system. We reconstructed the decay traces using the lifetime and abundance values estimated by ML and SPCImage methods and utilized the root-mean-squared-error (RMSE) as marker. Results: The RMSE, which represents the difference between the reconstructed and measured decay traces, was observed to be lower for ML than for SPCImage. In addition, we could demonstrate with a three-component analysis the high potential and flexibility of the ML method to deal with more than two lifetime components.
  • Item
    Looking for a perfect match: multimodal combinations of Raman spectroscopy for biomedical applications
    (Bellingham, Wash. : SPIE, 2021) Schie, Iwan; Stiebing, Clara; Popp, Jürgen
    Raman spectroscopy has shown very promising results in medical diagnostics by providing label-free and highly specific molecular information of pathological tissue ex vivo and in vivo. Nevertheless, the high specificity of Raman spectroscopy comes at a price, i.e., low acquisition rate, no direct access to depth information, and limited sampling areas. However, a similar case regarding advantages and disadvantages can also be made for other highly regarded optical modalities, such as optical coherence tomography, autofluorescence imaging and fluorescence spectroscopy, fluorescence lifetime microscopy, second-harmonic generation, and others. While in these modalities the acquisition speed is significantly higher, they have no or only limited molecular specificity and are only sensitive to a small group of molecules. It can be safely stated that a single modality provides only a limited view on a specific aspect of a biological specimen and cannot assess the entire complexity of a sample. To solve this issue, multimodal optical systems, which combine different optical modalities tailored to a particular need, become more and more common in translational research and will be indispensable diagnostic tools in clinical pathology in the near future. These systems can assess different and partially complementary aspects of a sample and provide a distinct set of independent biomarkers. Here, we want to give an overview on the development of multimodal systems that use RS in combination with other optical modalities to improve the diagnostic performance.
  • Item
    Characteristics of normal human retinal pigment epithelium cells with extremes of autofluorescence or intracellular granule count
    (Hong Kong : AME Publishing Company, 2021-3) Bermond, Katharina; Berlin, Andreas; Tarau, Ioana-Sandra; Wobbe, Christina; Heintzmann, Rainer; Curcio, Christine A.; Sloan, Kenneth R.; Ach, Thomas
    Background: Cells of the retinal pigment epithelium (RPE) accumulate different kinds of granules (lipofuscin, melanolipofuscin, melanosomes) within their cell bodies, with lipofuscin and melanolipofuscin being autofluorescent after blue light excitation. High amounts of lipofuscin granules within the RPE have been associated with the development of RPE cell death and age-related macular degeneration (AMD); however, this has not been confirmed in histology so far. Here, based on our previous dataset of RPE granule characteristics, we report the characteristics of RPE cells from human donor eyes that show either high or low numbers of intracellular granules or high or low autofluorescence (AF) intensities. Methods: RPE flatmounts of fifteen human donors were examined using high-resolution structured illumination microscopy (HR-SIM) and laser scanning microscopy (LSM). Autofluorescent granules were analyzed regarding AF phenotype and absolute number of granules. In addition, total AF intensity per cell and granule density (number of granules per cell area) were determined. For the final analysis, RPE cells with total granule number below 5th or above the 95th percentile, or a total AF intensity ± 1.5 standard deviations above or below the mean were included, and compared to the average RPE cell at the same location. Data are presented as mean ± standard deviation. Results: Within 420 RPE cells examined, 42 cells were further analyzed due to extremes regarding total granule numbers. In addition, 20 RPE cells had AF 1.5 standard deviations below, 28 RPE cells above the mean local AF intensity. Melanolipofuscin granules predominate in RPE cells with low granule content and low AF intensity. RPE cells with high granule content have nearly twice (1.8 times) as many granules as an average RPE cell. Conclusions: In normal eyes, outliers regarding autofluorescent granule load and AF intensity signals are rare among RPE cells, suggesting that granule deposition and subsequent AF follows intrinsic control mechanisms at a cellular level. The AF of a cell is related to the composition of intracellular granule types. Ongoing studies using AMD donor eyes will examine possible disease related changes in granule distribution and further put lipofuscin´s role in aging and AMD further into perspective.
  • Item
    The First Report of mcr-1-Carrying Escherichia coli Originating from Animals in Serbia
    (Basel : MDPI, 2021) Mišić, Dušan; Kiskaroly, Ferenc; Szostak, Michael P.; Cabal, Adriana; Ruppitsch, Werner; Bernreiter-Hofer, Tanja; Milovanovic, Viktoria; Feßler, Andrea T.; Allerberger, Franz; Spergser, Joachim; Müller, Elke; Schwarz, Stefan; Braun, Sascha D.; Monecke, Stefan; Ehricht, Ralf; Korus, Maciej; Benković, Damir; Korzeniowska, Malgorzata; Loncaric, Igor
    The aim of this study was continuous monitoring of the presence of mcr-1 to mcr-5 genes in Enterobacterales isolated from cattle, pigs, and domestic poultry at intensive breeding facilities in Northern Vojvodina, Serbia, from 1 January 1 to 1 October 2020. Out of 2167 examined samples, mcr-1 was observed in five E. coli isolates originating from healthy turkeys. Four isolates belonged to the phylogenetic group B1, and one isolate to the phylogenetic group A. Detected E. coli serogenotypes (somatic O and flagellar H antigens) were O8:H25 and O29:H25. Core-genome multi-locus sequence typing (cgMLST) revealed three ST58 isolates clustering together in Clonal Complex (CC) 155 and two singletons of ST641-CC86 and ST410-CC23, respectively. Clonotyping revealed CH4-32 (n = 3), CH6-53 (n = 1) and CH4-24 (n = 1). In all isolates, the mcr-1 gene was located on a large IncX4 replicon type plasmid. Eight virulence-associated genes (VAGs) typical of avian pathogenic E. coli (APEC) (fyuA, fimH, hlyF, iss, ompT, sitA, traT, iroN) were detected in four isolates. These isolates were investigated for susceptibility to four biocides and revealed MIC values of 0.125% for glutardialdehyde, of 0.00003-0.00006% for chlorohexidine, of 4-6% for isopropanol and of 0.001-0.002% for benzalkonium chloride. All obtained MIC values of the tested biocides were comparable to the reference strain, with no indication of possible resistance. This is the first report of mcr-1.1-carrying E. coli from Serbia. Although only samples from turkeys were mcr-positive in this study, continuous monitoring of livestock samples is advised to prevent a spill-over from animals to humans.
  • Item
    Synaptic Plasticity in Memristive Artificial Synapses and Their Robustness Against Noisy Inputs
    (Lausanne : Frontiers Research Foundation, 2021) Du, Nan; Zhao, Xianyue; Chen, Ziang; Choubey, Bhaskar; Di Ventra, Massimiliano; Skorupa, Ilona; Bürger, Danilo; Schmidt, Heidemarie
    Emerging brain-inspired neuromorphic computing paradigms require devices that can emulate the complete functionality of biological synapses upon different neuronal activities in order to process big data flows in an efficient and cognitive manner while being robust against any noisy input. The memristive device has been proposed as a promising candidate for emulating artificial synapses due to their complex multilevel and dynamical plastic behaviors. In this work, we exploit ultrastable analog BiFeO3 (BFO)-based memristive devices for experimentally demonstrating that BFO artificial synapses support various long-term plastic functions, i.e., spike timing-dependent plasticity (STDP), cycle number-dependent plasticity (CNDP), and spiking rate-dependent plasticity (SRDP). The study on the impact of electrical stimuli in terms of pulse width and amplitude on STDP behaviors shows that their learning windows possess a wide range of timescale configurability, which can be a function of applied waveform. Moreover, beyond SRDP, the systematical and comparative study on generalized frequency-dependent plasticity (FDP) is carried out, which reveals for the first time that the ratio modulation between pulse width and pulse interval time within one spike cycle can result in both synaptic potentiation and depression effect within the same firing frequency. The impact of intrinsic neuronal noise on the STDP function of a single BFO artificial synapse can be neglected because thermal noise is two orders of magnitude smaller than the writing voltage and because the cycle-to-cycle variation of the current–voltage characteristics of a single BFO artificial synapses is small. However, extrinsic voltage fluctuations, e.g., in neural networks, cause a noisy input into the artificial synapses of the neural network. Here, the impact of extrinsic neuronal noise on the STDP function of a single BFO artificial synapse is analyzed in order to understand the robustness of plastic behavior in memristive artificial synapses against extrinsic noisy input.
  • Item
    Molecular characterisation of extended-spectrum ß-lactamase producing Escherichia coli in wild birds and cattle, Ibadan, Nigeria
    (London : BioMed Central, 2021) Fashae, Kayode; Engelmann, Ines; Monecke, Stefan; Braun, Sascha D.; Ehricht, Ralf
    Background: Antimicrobial resistance (AMR) is an increasing global health concern reducing options for therapy of infections and also for perioperative prophylaxis. Many Enterobacteriaceae cannot be treated anymore with third generation cephalosporins (3GC) due to the production of certain 3GC hydrolysing enzymes (extended spectrum beta-lactamases, ESBLs). The role of animals as carriers and vectors of multi-resistant bacteria in different geographical regions is poorly understood. Therefore, we investigated the occurrence and molecular characteristics of ESBL-producing Escherichia coli (E. coli) in wild birds and slaughtered cattle in Ibadan, Nigeria. Cattle faecal samples (n = 250) and wild bird pooled faecal samples (cattle egrets, Bubulcus ibis, n = 28; white-faced whistling duck, Dendrocygna viduata, n = 24) were collected and cultured on cefotaxime-eosin methylene blue agar. Antimicrobial susceptibility was determined by agar diffusion assays and all 3GC resistant isolates were genotypically characterised for AMR genes, virulence associated genes (VAGs) and serotypes using DNA microarray-based assays. Results: All 3GC resistant isolates were E. coli: cattle (n = 53), egrets (n = 87) and whistling duck (n = 4); cultured from 32/250 (12.8%), 26/28 (92.9%), 2/24(8.3%), cattle, egrets and whistling duck faecal samples, respectively. blaCTX-M gene family was prevalent; blaCTX-M15 (83.3%) predominated over blaCTX-M9 (11.8%). All were susceptible to carbapenems. The majority of isolates were resistant to at least one of the other tested antimicrobials; multidrug resistance was highest in the isolates recovered from egrets. The isolates harboured diverse repositories of other AMR genes (including strB and sul2), integrons (predominantly class 1) and VAGs. The isolates recovered from egrets harboured more AMR genes; eight were unique to these isolates including tetG, gepA, and floR. The prevalent VAGs included hemL and iss; while 14 (including sepA) were unique to certain animal isolates. E. coli serotypes O9:H9, O9:H30 and O9:H4 predominated. An identical phenotypic microarray profile was detected in three isolates from egrets and cattle, indicative of a clonal relationship amongst these isolates. Conclusion: Wild birds and cattle harbour diverse ESBL-producing E. coli populations with potential of inter-species dissemination and virulence. Recommended guidelines to balance public health and habitat conservation should be implemented with continuous surveillance. © 2021, The Author(s).
  • Item
    Computational tissue staining of non-linear multimodal imaging using supervised and unsupervised deep learning
    (Washington, DC : OSA, 2021) Pradhan, Pranita; Meyer, Tobias; Vieth, Michael; Stallmach, Andreas; Waldner, Maximilian; Schmitt, Michael; Popp, Juergen; Bocklitz, Thomas
    Hematoxylin and Eosin (H&E) staining is the 'gold-standard' method in histopathology. However, standard H&E staining of high-quality tissue sections requires long sample preparation times including sample embedding, which restricts its application for 'real-time' disease diagnosis. Due to this reason, a label-free alternative technique like non-linear multimodal (NLM) imaging, which is the combination of three non-linear optical modalities including coherent anti-Stokes Raman scattering, two-photon excitation fluorescence and second-harmonic generation, is proposed in this work. To correlate the information of the NLM images with H&E images, this work proposes computational staining of NLM images using deep learning models in a supervised and an unsupervised approach. In the supervised and the unsupervised approach, conditional generative adversarial networks (CGANs) and cycle conditional generative adversarial networks (cycle CGANs) are used, respectively. Both CGAN and cycle CGAN models generate pseudo H&E images, which are quantitatively analyzed based on mean squared error, structure similarity index and color shading similarity index. The mean of the three metrics calculated for the computationally generated H&E images indicate significant performance. Thus, utilizing CGAN and cycle CGAN models for computational staining is beneficial for diagnostic applications without performing a laboratory-based staining procedure. To the author's best knowledge, it is the first time that NLM images are computationally stained to H&E images using GANs in an unsupervised manner.