Search Results

Now showing 1 - 4 of 4
  • Item
    Covalent Organic Frameworks for Efficient Energy Electrocatalysis: Rational Design and Progress
    (Weinheim : Wiley-VCH, 2021) Zhang, Hua; Zhu, Minshen; Schmidt, Oliver G.; Chen, Shuillang; Zhang, Kai
    An efficient catalyst with a precisely designed and predictable structure is highly desired to optimize its performance and understand the mechanism beyond the catalytic activity. Covalent organic frameworks (COFs), as an emerging class of framework materials linked by strong covalent bonds, simultaneously allow precise structure design with predictable synthesis and show advantages of large surface areas, tunable pore sizes, and unique molecular architectures. Although the research on COF‐based electrocatalysts is at an early age, significant progress has been made. Herein, the recent significant progress in the design and synthesis of COFs as highly efficient electrocatalysts for the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER) is summarized. Design principles for COFs as efficient electrocatalysts are discussed by considering essential factors for catalyzing the OER, ORR, and HER processes at the molecular level. Herein, a summary on the in‐depth understanding of the catalytic mechanism and kinetics limitations of COFs provides a general instruction for further exploring their vast potential for designing highly efficient electrocatalysts.
  • Item
    Architecture engineering of carbonaceous anodes for high‐rate potassium‐ion batteries
    (Hoboken, NJ : Wiley, 2021) Wu, Tianlai; Zhang, Weicai; Yang, Jiaying; Lu, Qiongqiong; Peng, Jing; Zheng, Mingtao; Xu, Fei; Liu, Yingliang; Liang, Yeru
    The limited lithium resource in earth's crust has stimulated the pursuit of alternative energy storage technologies to lithium‐ion battery. Potassium‐ion batteries (KIBs) are regarded as a kind of promising candidate for large‐scale energy storage owing to the high abundance and low cost of potassium resources. Nevertheless, further development and wide application of KIBs are still challenged by several obstacles, one of which is their fast capacity deterioration at high rates. A considerable amount of effort has recently been devoted to address this problem by developing advanced carbonaceous anode materials with diverse structures and morphologies. This review presents and highlights how the architecture engineering of carbonaceous anode materials gives rise to high‐rate performances for KIBs, and also the beneficial conceptions are consciously extracted from the recent progress. Particularly, basic insights into the recent engineering strategies, structural innovation, and the related advances of carbonaceous anodes for high‐rate KIBs are under specific concerns. Based on the achievements attained so far, a perspective on the foregoing, and proposed possible directions, and avenues for designing high‐rate anodes, are presented finally.
  • Item
    Studies of Li2Fe0.9M0.1SO Antiperovskite Materials for Lithium–Ion Batteries: The Role of Partial Fe2+ to M2+ Substitution
    (Lausanne : Frontiers Media, 2021) Gorbunov, Mikhail V.; Carocci, Salvatore; Gonzalez Martinez, Ignacio G.; Baran, Volodymyr; Mikhailova, Daria
    Cubic Li2Fe0.9M0.1SO antiperovskites with M–Co2+, or Mn2+ were successfully synthesized by a solid-state technique, and studied as cathode materials in Li-batteries. The influence of the Co, and Mn cation substitution of Fe in Li2FeSO on the resulting electrochemical performance was evaluated by galvanostatic cycling, while the reaction mechanism was explored by applying operando X-ray absorption and X-ray diffraction techniques using synchrotron radiation facilities. Even 10% Fe-substitution by these metals completely changes the structural behavior of the material upon Li-removal and insertion, in comparison to Li2FeSO. The Co-substitution significantly improves cyclability of the material at high current densities in comparison to the non-substituted material, reaching a specific capacity of 250 mAh/g at 1C current density. In contrast, the Mn-substitution leads to deterioration of the electrochemical performance because of the impeded kinetics, which may be caused by the appearance of a second isostructural phase due to formation of Jahn-Teller Mn3+ cations upon delithiation.
  • Item
    Towards tellurium-free thermoelectric modules for power generation from low-grade heat
    (London : Nature Publishing Group, 2021) Ying, Pingjun; He, Ran; Mao, Jun; Zhang, Qihao; Reith, Heiko; Sui, Jiehe; Ren, Zhifeng; Nielsch, Kornelius; Schierning, Gabi
    Thermoelectric technology converts heat into electricity directly and is a promising source of clean electricity. Commercial thermoelectric modules have relied on Bi2Te3-based compounds because of their unparalleled thermoelectric properties at temperatures associated with low-grade heat (<550 K). However, the scarcity of elemental Te greatly limits the applicability of such modules. Here we report the performance of thermoelectric modules assembled from Bi2Te3-substitute compounds, including p-type MgAgSb and n-type Mg3(Sb,Bi)2, by using a simple, versatile, and thus scalable processing routine. For a temperature difference of ~250 K, whereas a single-stage module displayed a conversion efficiency of ~6.5%, a module using segmented n-type legs displayed a record efficiency of ~7.0% that is comparable to the state-of-the-art Bi2Te3-based thermoelectric modules. Our work demonstrates the feasibility and scalability of high-performance thermoelectric modules based on sustainable elements for recovering low-grade heat.